R. Kennedy
Constraining the warm dark matter particle mass with Milky Way satellites
Kennedy, R.; Frenk, C.; Cole, S.; Benson, A.
Authors
C. Frenk
Professor Shaun Cole shaun.cole@durham.ac.uk
Director of the Institute for Computational Cosmology
A. Benson
Abstract
Particle physics theories predict the existence of particles (such as keV mass sterile neutrinos) which could behave as warm dark matter (WDM), producing a cutoff in the linear density power spectrum on the scale of dwarf galaxies. Thus, the abundance of Milky Way satellite galaxies depends on the mass of the warm particle and also scales with the mass of the host galactic halo. We use the GALFORM semi-analytic model of galaxy formation to compare predicted satellite luminosity functions to Milky Way data and determine a lower bound on the thermally produced WDM particle mass. This depends strongly on the Milky Way halo mass and, to some extent, on the baryonic physics assumed. For our fiducial model, we find that for a particle mass of 3.3 keV (the 2σ lower limit from an analysis of the Lyman α forest by Viel et al.) the Milky Way halo mass is required to be >1.4 × 1012 M⊙. For this same fiducial model, we also find that all WDM particle masses are ruled out (at 95 per cent confidence) if the Milky Way halo mass is smaller than 1.1 × 1012 M⊙, while if the mass of the Galactic halo is greater than 1.8 × 1012 M⊙, only WDM particle masses larger than 2 keV are allowed.
Citation
Kennedy, R., Frenk, C., Cole, S., & Benson, A. (2014). Constraining the warm dark matter particle mass with Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 442(3), 2487-2495. https://doi.org/10.1093/mnras/stu719
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 9, 2014 |
Online Publication Date | Jun 24, 2014 |
Publication Date | Aug 1, 2014 |
Deposit Date | Aug 21, 2014 |
Publicly Available Date | Sep 9, 2014 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 442 |
Issue | 3 |
Pages | 2487-2495 |
DOI | https://doi.org/10.1093/mnras/stu719 |
Keywords | Galaxies: dwarf, Galaxies: formation, Dark matter. |
Public URL | https://durham-repository.worktribe.com/output/1424676 |
Files
Published Journal Article
(471 Kb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-percent Survey
(2024)
Journal Article
DESI mock challenge: constructing DESI galaxy catalogues based on FastPM simulations
(2023)
Journal Article
The two-point correlation function covariance with fewer mocks
(2023)
Journal Article