A. Elbourne
Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation
Elbourne, A.; McLean, B.; Voïtchovsky, K.; Warr, G.G.; Atkin, R.
Authors
Abstract
All reported methods of graphene exfoliation require external energy input, most commonly from sonication,1 shaking,2 or stirring.3 The reverse process—aggregation of single or few layer graphene sheets—occurs spontaneously in most solvents. This makes producing, and especially storing, graphene in economic quantities challenging,4,5 which is a significant barrier to widespread commercialization. This study reveals ionic liquids (ILs) can spontaneously exfoliate graphene from graphite at room temperature. The process is thermally activated and follows an Arrhenius-type behavior, resulting in thermodynamically stable IL/graphene suspensions. Using atomic force microscopy, the kinetics of the exfoliation could be followed in situ and with subnanometer resolution, showing that both the size and the charge of the constituent IL ions play a key role. Our results provide a general molecular mechanism underpinning spontaneous graphene exfoliation at room temperature in electrically conducting ILs, paving the way for their adoption in graphene-based technology.
Citation
Elbourne, A., McLean, B., Voïtchovsky, K., Warr, G., & Atkin, R. (2016). Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation. Journal of Physical Chemistry Letters, 7(16), 3118-3122. https://doi.org/10.1021/acs.jpclett.6b01323
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 27, 2016 |
Online Publication Date | Jul 27, 2016 |
Publication Date | Aug 18, 2016 |
Deposit Date | Jan 27, 2017 |
Publicly Available Date | Jul 27, 2017 |
Journal | Journal of Physical Chemistry Letters |
Electronic ISSN | 1948-7185 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 7 |
Issue | 16 |
Pages | 3118-3122 |
DOI | https://doi.org/10.1021/acs.jpclett.6b01323 |
Public URL | https://durham-repository.worktribe.com/output/1387413 |
Files
Accepted Journal Article
(2.6 Mb)
PDF
Copyright Statement
This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jpclett.6b01323.
You might also like
Ions Adsorbed at Amorphous Solid/Solution Interfaces Form Wigner Crystal-like Structures.
(2023)
Journal Article
The Effect of Ageing on the Structure and Properties of Model Liquid Infused Surfaces
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search