Professor Victor Abrashkin victor.abrashkin@durham.ac.uk
Professor
Groups of automorphisms of local fields of period p^M and nilpotent class < p
Abrashkin, Victor
Authors
Abstract
Suppose K is a finite field extension of Qp containing a pM-th primitive root of unity. For 1 6 s < p denote by K[s, M] the maximal p-extension of K with the Galois group of period pM and nilpotent class s. We apply the nilpotent Artin–Schreier theory together with the theory of the field-of-norms functor to give an explicit description of the Galois groups of K[s, M]/K. As application we prove that the ramification subgroup of the absolute Galois group of K with the upper index v acts trivially on K[s, M] iff v > eK(M + s/(p − 1)) − (1 − δ1s)/p, where eK is the ramification index of K and δ1s is the Kronecker symbol.
Citation
Abrashkin, V. (2017). Groups of automorphisms of local fields of period p^M and nilpotent class < p. Annales de l'Institut Fourier, 67(2), 605-635. https://doi.org/10.5802/aif.3093
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 14, 2016 |
Online Publication Date | Sep 22, 2016 |
Publication Date | Jun 1, 2017 |
Deposit Date | Sep 13, 2016 |
Publicly Available Date | Oct 14, 2016 |
Journal | Annales de l'Institut Fourier |
Print ISSN | 0373-0956 |
Electronic ISSN | 1777-5310 |
Publisher | Association des Annales de l'Institut Fourier |
Peer Reviewed | Peer Reviewed |
Volume | 67 |
Issue | 2 |
Pages | 605-635 |
DOI | https://doi.org/10.5802/aif.3093 |
Public URL | https://durham-repository.worktribe.com/output/1375069 |
Files
Published Journal Article (Final published version)
(755 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nd/4.0/
Copyright Statement
Final published version
Published Journal Article (Advance online version)
(754 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nd/4.0/
Copyright Statement
Advance online version Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/
You might also like
Ramification Filtration and Differential Forms
(2022)
Journal Article
Ramification filtration via deformations
(2021)
Journal Article
Groups of automorphisms of local fields of period p and nilpotent class < p, II
(2017)
Journal Article
Groups of automorphisms of local fields of period p and nilpotent class < p, I
(2017)
Journal Article
Galois groups of local fields, Lie algebras and ramification
(2015)
Book Chapter
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search