Professor Victor Abrashkin victor.abrashkin@durham.ac.uk
Professor
Suppose K is a finite field extension of Qp containing a pM-th primitive root of unity. For 1 6 s < p denote by K[s, M] the maximal p-extension of K with the Galois group of period pM and nilpotent class s. We apply the nilpotent Artin–Schreier theory together with the theory of the field-of-norms functor to give an explicit description of the Galois groups of K[s, M]/K. As application we prove that the ramification subgroup of the absolute Galois group of K with the upper index v acts trivially on K[s, M] iff v > eK(M + s/(p − 1)) − (1 − δ1s)/p, where eK is the ramification index of K and δ1s is the Kronecker symbol.
Abrashkin, V. (2017). Groups of automorphisms of local fields of period p^M and nilpotent class < p. Annales de l'Institut Fourier, 67(2), 605-635. https://doi.org/10.5802/aif.3093
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 14, 2016 |
Online Publication Date | Sep 22, 2016 |
Publication Date | Jun 1, 2017 |
Deposit Date | Sep 13, 2016 |
Publicly Available Date | Oct 14, 2016 |
Journal | Annales de l'Institut Fourier |
Print ISSN | 0373-0956 |
Electronic ISSN | 1777-5310 |
Publisher | Association des Annales de l'Institut Fourier |
Peer Reviewed | Peer Reviewed |
Volume | 67 |
Issue | 2 |
Pages | 605-635 |
DOI | https://doi.org/10.5802/aif.3093 |
Public URL | https://durham-repository.worktribe.com/output/1375069 |
Published Journal Article (Final published version)
(755 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nd/4.0/
Copyright Statement
Final published version
Published Journal Article (Advance online version)
(754 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nd/4.0/
Copyright Statement
Advance online version Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/
Galois groups of p-extensions of higher local fields
(2024)
Journal Article
Ramification Filtration and Differential Forms
(2022)
Journal Article
Ramification filtration via deformations
(2021)
Journal Article
Groups of automorphisms of local fields of period p and nilpotent class < p, II
(2017)
Journal Article
Groups of automorphisms of local fields of period p and nilpotent class < p, I
(2017)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search