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GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS
OF PERIOD pM AND NILPOTENT CLASS < p

by Victor ABRASHKIN

Abstract. — Suppose K is a finite field extension of Qp containing a pM -th
primitive root of unity. For 1 6 s < p denote byK[s,M ] the maximal p-extension of
K with the Galois group of period pM and nilpotent class s. We apply the nilpotent
Artin–Schreier theory together with the theory of the field-of-norms functor to give
an explicit description of the Galois groups of K[s,M ]/K. As application we prove
that the ramification subgroup of the absolute Galois group of K with the upper
index v acts trivially on K[s,M ] iff v > eK(M + s/(p − 1)) − (1 − δ1s)/p, where
eK is the ramification index of K and δ1s is the Kronecker symbol.
Résumé. — Soit K une extension finie de Qp contenant une racine pM -ième

primitive de l’unité. Pour 1 6 s < p on note K[s,M ] la p-extension maximale de
K dont le groupe de Galois est de période pM et de classe de nilpotence s. En
utilisant la théorie d’Artin–Schreier nilpotente et la théorie du corps des normes
on donne une description explicite du groupe de Galois de K[s,M ]/K. Comme
application de ce résultat on montre que le sous-groupe de ramification du groupe
de Galois absolu de K de ramification supérieure v agit trivialement sur K[s,M ]
si et seulement si v > eK(M + s/(p − 1)) − (1 − δ1s)/p, où eK est l’indice de
ramification de K et δ1s est le symbole de Kronecker.

Introduction

Everywhere in the paper M ∈ N is fixed and p 6= 2 is prime.
Let K be a complete discrete valuation field of characteristic 0 with

finite residue field k ' Fq0 , where q0 = pN0 , N0 ∈ N. Fix an algebraic
closure K̄ of K and denote by K<p(M) the maximal p-extension of K in
K̄ with the Galois group of nilpotent class < p and exponent pM . Then
Γ<p(M) := Gal(K<p(M)/K) = Γ/ΓpM

Cp(Γ), where Γ = Gal(K̄/K) and
Cp(Γ) is the closure of the subgroup of commutators of order > p.

Keywords: local fields, upper ramification numbers.
Math. classification: 11S15, 11S20.



2 Victor ABRASHKIN

Let {Γ(v)}v>0 be the ramification filtration of Γ in upper numbering [14].
The importance of this additional structure on the Galois group Γ (which
reflects arithmetic properties of K) can be illustrated by the local analogue
of the Grothendieck Conjecture [5, 6, 13]: the knowledge of Γ together with
the filtration {Γ(v)}v>0 is sufficient to recover uniquely the isomorphic class
of K in the category of complete discrete valuation fields.

Let {Γ<p(M)(v)}v>0 be the induced ramification filtration of Γ<p(M).
Then the problem of arithmetical description of Γ<p(M) is the problem of
explicit description of the filtration {Γ<p(M)(v)}v>0 in terms of generators
of Γ<p(M).
An analogue of this problem was studied in [2, 3, 4] in the case of

local fields K of characteristic p with residue field k. More precisely, let
G = Gal(Ksep/K) and G<p(M) = G/GpM

Cp(G). In [2, 3] we developed a
nilpotent version of the Artin–Schreier theory which allows us to construct
identification of profinite groups G<p(M) = G(L). Here L is a profinite Lie
Z/pM -algebra of nilpotent class < p and G(L) is the pro-p-group, obtained
from L by the Campbell–Hausdorff composition law, cf. Subsection 1.2 be-
low for more details and [7, Subsection 1.1] for non-formal comments about
nilpotent Artin–Schreier theory.

On the one hand, the above identification of G<p(M) with G(L) depends
on a choice of uniformising element in K and, therefore, is not functorial (in
particular, it can’t be used directly to develop a nilpotent analog of classical
local class field theory). On the other hand, the ramification subgroups
G<p(M)(v) can be now described in terms of appropriate ideals L(v) of the
Lie algebra L. The definition of these ideals essentially uses the extension of
scalars Lk := L⊗WM (k) of L (such operation does not exist in the category
of p-groups) together with the appropriate explicit system of generators of
Lk, cf. Subsection 1.4. This justifies the advantage of the language of Lie
algebras in the theory of p-extensions of local fields.
In this paper we apply the above characteristic p results to the study of

similar properties in the mixed characteristic case, i.e. to the study of the
group Γ<p(M) together with its ramification filtration. Our main tool is
the Fontaine–Wintenberger theory of the field-of-norms functor [15]. Note
also that we assume that K contains a primitive pM -th root of unity and
our methods generalize the approach from [1] where we considered the case
M = 1. In some sense our theory can be treated as nilpotent version of
Kummer’s theory in the context of complete discrete valuation fields. As a
result, we identify Γ<p(M) with the group G(L), where L is a Lie Z/pM -
algebra and for an appropriate ideal J of L, we have the following exact

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 3

sequence of Lie algebras

(0.1) 0 −→ L/J −→ L −→ CM −→ 0 .

Here CM is a cyclic group of order pM with the trivial structure of Lie
algebra over Z/pM .
As a first step in the study of L, we give an explicit description of the

ideal J . More generally, if Cs(L) is the closure of the ideal of commutators
of order > s in L, then for s > 2, we have Cs(L) ⊂ L/J and exact
sequence (0.1) induces the exact sequences

0 −→ L/L(s) −→ L/Cs(L) −→ CM −→ 0,

where all L(s) are ideals in L. The main result of Section 3, Theorem 3.3,
describes these ideals L(s) with 2 6 s 6 p and gives in particular that
J = L(p).

Extension (0.1) splits in the category of Z/pM -modules and its structure
can be given by explicit construction of a lift τ<p of a generator of CM
to L and the appropriate differentiation adτ<p ∈ End(L/J ). The study of
adτ<p will be done in the next paper via methods used in the case M = 1
in [1].
In Section 4 we apply our approach to find for 1 6 s < p, the maxi-

mal upper ramification numbers v(K[s,M ]/K) of the maximal extensions
K[s,M ] of K with Galois groups of period pM and nilpotent class s. (The
maximal upper ramification number for a finite extension K ′/K in K̄ is the
maximal v0 such that the ramification subgroups Γ(v) act trivially on K ′
if v > v0.) This result can be stated in the following form, cf. Theorem 4.5
from Section 4:

If [K : Qp] <∞ and ζM ∈ K then for 1 6 s < p,

v(K[s,M ]/K) = eK

(
M + s

p− 1

)
− 1− δs1

p
.

where eK is the ramification index ofK/Qp and δ is the Kronecker
symbol.

Remark. — The case s = 1 is very well-known and can be established
without the assumption ζM ∈ K. Is it possible to remove this restriction
when s > 1?

Notation. — If M is an R-module then its extension of scalars M⊗R S
will be very often denoted by MS , cf. also another agreement in Subsec-
tion 1.1. Very often we drop off the indication to M from our notation and
use just K<p,Γ<p,G<p etc. instead of K<p(M),Γ<p(M),G<p(M), etc.

TOME 0 (0), FASCICULE 0



4 Victor ABRASHKIN

1. Preliminaries

Let K be a complete discrete valuation field of characteristic p with
residue field k ' Fq0 , q0 = pN0 , and fixed uniformiser t0. In other words,
K = k((t0)).
As earlier, G = Gal(Ksep/K), K<p = K<p(M) is the subfield of Ksep

fixed by GpM

Cp(G) and G<p = G<p(M) = Gal(K<p/K). The ramification
filtration of G<p was studied in details in [2, 3, 4]. We overview these results
in the next subsections.

1.1. Compatible system of lifts modulo pM

The uniformizer t0 of K gives a p-basis for any separable extension E
of K, i.e. {1, t0, . . . , tp−1

0 } is a basis of the Ep-module E . We can use t0 to
construct a functorial on E (and on M) system of lifts O(E)(= OM (E)) of
E modulo pM . Recall that these lifts appear in the form WM (σM−1E)[t],
where WM is the functor of Witt vectors of length M , σ is the Frobenius
morphism of taking p-th power and t = (t0, 0, . . . , 0) ∈WM (K).
Note that t ∈ O(K) ⊂WM (K), tmod p = t0 and σt = tp. The lift O(K) is

naturally identified with the algebra of formal Laurent seriesWM (k)((t)) in
the variable t with coefficients inWM (k). A lift σ of the absolute Frobenius
endomorphism of K to O(K) is uniquely determined by the condition σt =
tp. For a separable extension E of K we then have an extension of the
Frobenius σ from E to O(E)(= WM (σM−1E)[t]). As a result, we obtain
a compatible system of lifts of the Frobenius endomorphism of Ksep to
O(Ksep) = lim−→

E
O(E). For simplicity, we shall denote this lift also by σ.

Note that σ is induced by the standard Frobenius endomorphism WM (σ)
of WM (Ksep) ⊃ O(Ksep).

Suppose η0 ∈ AutK and let WM (η0) be the induced automorphism of
WM (K). If WM (η0)(t) ∈ O(K) then η := WM (η0)|O(K) is a lift of η0 to
O(K), i.e. η ∈ AutO(K) and ηmod p = η0. With the above notation and
assumption (in particular, η(t) ∈ O(K)) we have even more.

Proposition 1.1. — Suppose E is separable over K, ηE0 ∈ Aut E and
ηE0|K = η0. Then ηE := WM (ηE0)|O(E) is a lift of ηE0 to O(E) such that
ηE |O(K) = η.

Proof. — Indeed, using that O(E) = WM (σM−1E)[t], we obtain

ηE(WM (σM−1E)) = WM (ηE0)(WM (σM−1E)) ⊂WM (σM−1E)) ⊂ O(E) ,

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 5

and ηE(t) = WM (ηE0)(t) = WM (η0)(t) ∈ O(K) ⊂ O(E). So, ηE(O(E)) ⊂
O(E). Obviously, ηE mod p = ηE0. �

Remark. — The above lifts ηE commute with σ if and only if η com-
mutes with σ, i.e. σ(η(t)) = η(tp). In particular, if η(t) = tαp

M−1 with
α ∈ O(K) then σ(η(t)) = tpαp

M = η(tp) (use that σ(α) ≡ αp mod pO(K)).

A very special case of the above proposition appears as the following
property:

If E/K is Galois then the elements g of the group Gal(E/K) can
be naturally lifted to (commuting with σ) automorphisms of O(E)
via setting g(t) = t. Therefore, O(Ksep) has a natural structure of
a G-module, the action of G commutes with σ, O(Ksep)G = O(K)
and O(Ksep)|σ=id = WM (Fp).

Everywhere below we shall use the following simplified notation.

Notation. — If M is a Z/pM -module and E is a separable extension
of K we set M E := MO(E)(= M ⊗Z/pM O(E)). Similarly, we agree that
Mk := M⊗Z/pM WM (k).

1.2. Categories of p-groups and Lie Z/pM -algebras, [11, 12]

If L is a Lie Z/pM -algebra of nilpotent class < p, denote by G(L) the
p-group obtained from L via the Campbell-Hausdorff composition law ◦
defined for l1, l2 ∈ L via ẽxp(l1 ◦ l2) = ẽxpl1 · ẽxpl2. Here

ẽxp(x) = 1 + x+ · · ·+ xp−1/(p− 1)!

is the truncated exponential from L to the quotient of the enveloping al-
gebra A of L modulo the p-th power of its augmentation ideal J . (This
construction of the Campbell-Hausdorff operation was introduced in [2,
Subsection 1.2].)
The correspondence L 7→ G(L) induces equivalence of the categories of

finite Lie Z/pM -algebras and finite p-groups of exponent pM of the same
nilpotent class 1 6 s0 < p. This equivalence can be extended to the similar
categories of profinite Lie algebras and groups.

1.3. Witt pairing and Hilbert symbol, [8, 9]

Let

E(α,X) = exp
(
αX + σ(α)Xp

p
+ · · ·+ σn(α)Xpn

pn
. . .

)
∈W (k)[[X]],

TOME 0 (0), FASCICULE 0



6 Victor ABRASHKIN

where α ∈ W (k), be the Shafarevich version of the Artin–Hasse expo-
nential. Set Z+(p) = {a ∈ N | gcd(a, p) = 1}. Then any element u ∈
K∗modK∗pM can be uniquely written as

u = ta0
0

∏
a∈Z+(p)

E(αa, ta0)1/amodK∗p
M

,

where a0 = a0(u) ∈ Zmod pM and all αa = αa(u) ∈W (k) mod pM .
Let M be a profinite free WM (k)-module with the set of generators

{D0} ∪ {Dan | a ∈ Z+(p), n ∈ Z/N0}. Use the correspondences

(1.1) t0 7→ D0, E(α, ta0)1/a 7→
∑

nmodN0

σn(α)Dan,

to identify K∗/K∗pM with a closed Z/pM -submodule in M. Under this
identification we have K∗/K∗pM ⊗Z/pM WM (k) = M.
Define the continuous action of the group 〈σ〉 = Gal(k/Fp) on M as

an extension of the natural action on WM (k) by setting σD0 = D0 and
σDan = Da,n+1. Then K∗/K∗p

M = MGal(k/Fp).
The Witt pairing

O(K)/(σ − id)O(K)×K∗/K∗p
M

−→ Z/pM ,

is given explicitly by the symbol [f, g) = Tr (Res(f dlogCol g)). Here Tr :
WM (k) −→ Z/pM is induced by the trace of the field extension k/Fp,
f ∈ O(K) and Col g is the image of g ∈ K∗/K∗pM under the group homo-
morphism Col : K∗/K∗pM −→ O∗M (K) uniquely defined on the above free
generators of K∗/K∗pM via the conditions t0 7→ t and E(α, ta0) 7→ E(α, ta).
The Witt pairing is non-degenerate and determines the identification

K∗/K∗p
M

= Homcont(O(K)/(σ − id)O(K),Z/pM ).

It also coincides with the Hilbert symbol (in the case of local fields of
characteristic p) and allows us to specify explicitly the reciprocity map
κ : K∗/K∗pM −→ Gab<p of class field theory. Namely, in the above notation
we have κ(g)f = f + [f, g).

1.4. Lie algebra L and identification ηM

Let L̃ be a free profinite Lie Z/pM -algebra with the module of (free)
generators K∗/K∗pM . Then the WM (k)-module L̃k has the set of free gen-
erators

(1.2) {D0} ∪ {Dan | a ∈ Z+(p), n ∈ Z/N0}.

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 7

If Cp(L̃) is the closure of the ideal of commutators of order > p, then
L = L̃/Cp(L̃) is the maximal quotient of L̃ of nilpotent class < p.

Remark. — Lk is a free object in the category of profinite Lie WM (k)-
algebras of nilpotent class < p with the set of free generators (1.2).

We shall use the same notationD0 andDan for the images of the elements
of (1.2) in L. Choose α0 ∈WM (k) such that Trα0 = 1.
Consider e = α0D0 +

∑
a∈Z+(p) t

−aDa0 ∈ G(LK). If we set D0n :=
(σnα0)D0 then e can be written as

∑
a∈Z0(p) t

−aDa0, where Z0(p) =
Z+(p) ∪ {0}.
Fix f ∈ G(LKsep

) such that σf = e ◦ f . Then for τ ∈ G, the correspon-
dence

τ 7→ (−f) ◦ τf ∈ G(LKsep
)|σ=id = G(L),

induces the identification of profinite groups ηM : G<p ' G(L).
Note that f ∈ LK<p

and G<p strictly acts on the G-orbit of f .
The above result is a covariant version of the nilpotent Artin–Schreier

theory developed in [3], cf. also Subsection 1.1 in [7] for the relation between
the covariant and contravariant versions of this theory and for appropriate
non-formal comments.

We shall use below a fixed choice of f and use the notation for e and f
without further references.

1.5. Relation to class field theory

The above identification ηM taken modulo C2(G<p) gives an isomorphism
of profinite p-groups

ηabM : Gab
<p −→ Lab = L/C2(L) = MGal(k/Fp) = K∗/K∗p

M

.

Proposition 1.2. — η abM is induced by the inverse to the reciprocity
map of local class field theory κ.

Proof. — Indeed, let {βi}16i6N0 be a Z/pM -basis of WM (k) and let
{γi}16i6N0 be its dual basis with respect to the bilinear form induced
by the trace of the field extension W (k)[1/p]/Qp.

If a ∈ Z+(p) and E(βi, ta0)1/a = Dia, then Dia =
∑
n σ

n(βi)Dan, and,
therefore, Da0 =

∑
i γiDia. This implies that

e =
∑
i,a

t−aγiDia + α0D0 modC2(LK),

f =
∑
i,a

fiaDia + f0D0 modC2(LKsep),

TOME 0 (0), FASCICULE 0



8 Victor ABRASHKIN

where all fia, f0 ∈ O(K<p), σfia − fia = γit
−a and σf0 − f0 = α0. From

the definition of ηM it follows formally that for τia = (ηabM )−1Dia and
τ0 = (ηabM )−1D0, τiafi1a1 = fi1a1 + δ(ii1)δ(aa1), τ0fi1a1 = fi1a1 , τiaf0 = f0
and τ0f0 = f0 + 1. (Here δ is the Kronecker symbol.)

Now the explicit formula for the Hilbert symbol from Subsection 1.3
shows that κ(E(βi, ta0)1/a) and κ(t0) act by the same formulae as τia and,
resp., τ0. �

1.6. Construction of lifts of analytic automorphisms

Let η0 ∈ AutK. Then there is a lift η<p,0 ∈ AutK<p of η0. (Use that the
subgroup GpM

Cp(G) of G is characteristic.) For any another such lift η′<p,0,
we have η′<p,0η−1

<p,0 ∈ G<p.
The covariant version of the Witt–Artin–Schreier theory [3], Section 1

(cf. also [7, Subsection 1.1] and [1, Section 1]), gives explicit description
of the automorphisms η<p,0 in terms of the identification ηM . Consider
a special case of this construction when η0 admits a lift η ∈ AutO(K)
which commutes with σ, and therefore we have the appropriate lifts η<p ∈
AutO(K<p), cf. Subsection 1.1. Then in terms of our fixed elements e and
f , we have η<p(f) = c ◦ (A⊗ idO(K<p))f , where c ∈ LK and A ∈ AutL can
be found from the relation

(idL ⊗ η)e = σc ◦ (A⊗ idO(K))e ◦ (−c) ,

cf. [3, Subsection 1.5], or [1, Proposition 1.1], and Subsection 3.2 below.
In other words, if (A⊗ idWM (k))(Da0) = D̃a0 then

∑
a∈Z0(p)

η(t)−aDa0 = σc ◦

 ∑
a∈Z0(p)

t−aD̃a0

 ◦ (−c) .

Note that proceeding as in [3, Subsection 1.5.4], cf. also [1, Subsec-
tion 1.2], we can verify (this fact will be used systematically below) that
with respect to the identification ηM , the automorphism A coincides with
the conjugation Ad η<p : τ 7→ η−1

<p τ η<p (here τ ∈ G<p).

1.7. Ramification filtration in L

For v > 0, denote by G(v)
<p the ramification subgroup of G<p with the

upper index v. Let L(v) be the ideal of L such that ηM (G(v)
<p ) = G(L(v)).

The ideals L(v) have the following explicit description.

ANNALES DE L’INSTITUT FOURIER
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First, for any a ∈ Z0(p) and n ∈ Z, set Dan := Da,nmodN0 . In other
words, we allow the second index in all Dan to take integral values and
assume that Dan1 = Dan2 iff n1 ≡ n2 modN0. For s > 1, agree to use
the notation (ā, n̄)s, where ā = (a1, . . . , as) has coordinates in Z0(p) and
n̄ = (n1, . . . , ns) ∈ Zs. Then we can attach to (ā, n̄)s the commutator
[. . . [Da1n1 , Da2n2 ], . . . , Dasns

] and set γ(ā, n̄)s = a1p
n1 + · · · + asp

ns . For
any γ > 0, let F0

γ,−N be the element from Lk given by

(1.3) F0
γ,−N =

∑
γ(ā,n̄)s=γ

pn1a1η(n̄)[. . . [Da1n1 , Da2n2 ], . . . , Dasns
]

where η(n̄) equals (s1!(s2 − s1)! . . . (s − sl)!)−1 if 0 6 n1 = · · · = ns1 >

ns1+1 = · · · = ns2 > · · · > nsl
= · · · = ns > −N , and equals to zero

otherwise. Then the main result of [4] (translated into the covariant setting,
cf. [5, Subsections 1.1.2 and 1.2.4]) states that:

There is Ñ(v) ∈ N such that if we fix any N > Ñ(v), then L(v) is
the minimal ideal of L such that for all γ > v, F0

γ,−N ∈ L
(v)
k .

2. Filtration {L(s)}s>1

In this section we define a decreasing central filtration {L(s)}s>1 in the
Z/pM -Lie algebra L from Subsection 1.4. Its definition depends on a choice
of a special element S ∈ m(K) := tWM (k)[[t]] ⊂ O(K). This element S
(together with the appropriate elements S0 and S′ from its definition) will
be specified in Section 4, where we apply our results to the mixed charac-
teristic case.

2.1. Elements S0, S
′, S ∈ m(K)

Let [p] be the isogeny of multiplication by p in the formal group
Spf Zp[[X]] over Zp with the logarithm X +Xp/p+ · · ·+Xpn

/pn + . . . .
Choose S0 ∈ m(K) and set S′ = [p]M−1(S0) and S = [p]M (S0). Then

S, S′ ∈ m(K), they both depend only on the residue S0 mod p and S = σS′.
In particular, if e∗ ∈ N is such that Smod p generates the ideal (te∗0 ) in
k[[t0]] then e∗ ≡ 0 mod pM .

TOME 0 (0), FASCICULE 0



10 Victor ABRASHKIN

Proposition 2.1.
(a) dS = 0 in Ω1

O(K);
(b) there is S′′ ∈ m(K), such that S = S′(p+ S′′);
(c) there are η0, η1 ∈WM (k)[[t]]× and η2 ∈WM (k)[[t]] such that

S = te
∗
η0 + pte

∗/pη1 + p2η2.

Proof.
(a) The congruence [p]X ≡ Xp mod pZp[[X]] implies that d([p]X) ∈

pZp[[X]]. Therefore, dS = 0 in Ω1
O(K).

(b) Note that [p](X) ≡ pX modX2. Therefore, there are wi ∈ Zp such
that S = [p]S′ = pS′ +

∑
i>2 wiS

′i and we can take S′′ =
∑
i>1 wi+1S

′i.
(c) The t0-adic valuation of S′mod p equals e∗/p. Then our property is

implied by the following equivalence in Zp[[X]]

[p](X) ≡ pX +Xp mod (pXp2−p+1, p2X). �

Remark. — We shall use below property (a) in the following form:
If s ∈ N and Ss =

∑
l>1 γlst

l, where all γls ∈ WM (k), then
lγls = 0.

2.2. Morphism ι

Let U = (1 + t0k[[t0]])× be the Zp-module of principal units in K.
Then U/UpM is a closed Z/pM -submodule in K∗/K∗pM . Note that m(K) =
WM (mK) ∩ O(K), where mK is the maximal ideal in the valuation ring of
K. Consider a (unique) continuous homomorphism

ι : U −→ m(K)

such that for any α ∈WM (k) and a ∈ Z+(p), ι : E(α, ta0) 7→ αta (here E is
the Shafarevich function, cf. Subsection 1.3).
Then ι induces an identification of U/UpM with the closed WM (k)-

submodule

Im ι =

 ∑
a∈Z+(p)

αat
a

∣∣∣∣∣αa ∈WM (k)


in O(K). This submodule is topologically generated over WM (k) by all ta
with a ∈ Z+(p).
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2.3. Definition of {L(s)}s>1

Set (K∗/K∗pM )(1) = K∗/K∗pM . For s > 1, let (K∗/K∗pM )(s+1) = (Im ι)Ss
with respect to the identification U/UpM = Im ι from Subsection 2.2. Note,
that S = σS′ implies that for any s ∈ N, (Im ι)Ss ⊂ Im ι.

Definition. — {L(s)}s>1 is the minimal central filtration of ideals of
the Lie algebra L such that for all s > 1, L(s) ⊃ (K∗/K∗pM )(s).

The ideals L(s) can be defined by induction on s as follows. Let
L(1) = L; then for s > 1, the ideal L(s + 1) is generated by the
elements of (K∗/K∗pM )(s+1) and [L(s),L]. Note also that for any s,
(K∗/K∗pM ) ∩ L(s) = (K∗/K∗pM )(s). (Use that Z/pM -module L(s) is iso-
morphic to (K∗/K∗pM )(s) ⊕ (L(s) ∩ C2(L)).
In addition, for any s > 1, the quotients (K∗/K∗pM )(s)/(K∗/K∗pM )(s+1)

are free Z/pM -modules. This easily implies that all L(s)/L(s+ 1) are also
free Z/pM -modules.

2.4. Characterization of {L(s)}s>1 in terms of e ∈ LK

Recall that e =
∑
a∈Z0(p) t

−aDa0, cf. Subsection 1.4.

Proposition 2.2. — The filtration {L(s)}s>1 is the minimal central
filtration in L such that L(1) = L and for all s > 1,

Sse ∈ Lm(K) + L(s+ 1)K.

Proof. — We need the following two lemmas.

Lemma 2.3. — For all s > 1 and αa ∈ WM (k) where a ∈ Z+(p), we
have∏

a∈Z+(p)

E(αa, ta0) ∈ (K∗/K∗p
M

)(s+1)

⇔
∏

a∈Z+(p)

E(αa, ta0)1/a ∈ (K∗/K∗p
M

)(s+1).

Proof of Lemma 2.3. — We must prove that∑
a∈Z+(p)

αat
a ∈ Ssm(K) ⇔

∑
a∈Z+(p)

1
a
αat

a ∈ Ssm(K).

Let Ss =
∑
l>1 γlst

l with γls ∈ WM (k), then lγls = 0, cf. Remark in
Subsection 2.1.
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Suppose ∑
a∈Z+(p)

αat
a ∈ Ssm(K).

Then
∑
a αat

a = (
∑
b βbt

b)(
∑
l γlst

l), where
∑
b βbt

b ∈ m(K) and αa =∑
a=b+l βbγls. This implies

1
a
αa =

∑
a=b+l

1
a
βbγls =

∑
a=b+l

1
b
βbγls,

because if a = b+ l and a ∈ Z+(p) then b ∈ Z+(p) and
1
a
γls −

1
b
γls = −lγls

ab
= 0.

So, ∑
a∈Z+(p)

1
a
αat

a =

 ∑
b∈Z+(p)

1
b
βbt

b

(∑
l

γlst
l

)
and ∑

a

1
a
αat

a ∈ Ssm(K).

Proceeding in the opposite direction we obtain the inverse statement.
The lemma is proved. �

Lemma 2.4. — If s > 1 and all αa ∈WM (k) then∏
a∈Z+(p)

E(αa, ta0)1/a ∈ (K∗/K∗p
M

)(s) ⇔
∑

a∈Z+(p)

αaDa0 ∈ (K∗/K∗p
M

)(s)
k

Proof of Lemma 2.4. — Suppose∏
a∈Z+(p)

E(αa, ta0)1/a ∈ (K∗/K∗p
M

)(s).

Choose a WM (Fp)-basis {βi} of WM (k), and let {γi} be its dual with
respect to the trace form. Then for any i,∏

a∈Z+(p)

E(βiαa, ta0)1/a ∈ (K∗/K∗p
M

)(s).

In other words (use (1.1) from Subsection 1.3),

ci =
∑

a∈Z+(p)
n∈Z/N0Z

σn(βi)σn(αa)Dan ∈
(
K∗/K∗p

M
)(s)
⊂ L(s),

and ∑
i

γici =
∑

a∈Z+(p)

αaDa0 ∈ L(s)k.
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Suppose now that
∑
a∈Z+(p) αaDa0 ∈ L(s)k. Then∑

a∈Z+(p)

αaDa0 ∈ (K∗/K∗p
M

)(s)
k ,

and, therefore, ∑
a∈Z+(p)
n∈Z/N0Z

σn(αa)Dan ∈ (K∗/K∗p
M

)(s).

This means, that ∏
a∈Z+(p)

E(αa, ta0)1/a ∈ (K∗/K∗p
M

)(s).

The lemma is proved. �

Now we can finish the proof of our proposition. If, as earlier, Ss =∑
l>1 γlst

l with γls ∈ WM (k), then (Im ι)Ss is the WM (k)-submodule in
m(K) generated by the elements ta1Ss =

∑
l>1 γlst

l+a1 , a1 ∈ Z+(p). The
above lemmas imply then that {L(s)}s>1 is the minimal central filtration
in L such that L(1) = L and for all a1 ∈ Z+(p), s > 1,∑

l>1
γlsDa1+l,0 ∈ L(s+ 1)k .

On the other hand,

Sse =
∑

a∈Z0(p)
l>1

γlst
−(a−l)Da0 ≡

∑
a1∈Z+(p)

∑
l>1

γlsDa1+l,0

 t−a1

modulo Lm(K). Therefore,

Sse ∈ Lm(K) + L(s+ 1)K

⇔
∑
l

γlsDa1+l,0 ∈ L(s+ 1)k for all a1 ∈ Z+(p).

The proposition is proved. �

Definition. — N =
∑
s>1 S

−sL(s)m(K).

Note that N is a Lie WM (Fp)-subalgebra in LK. With this notation
Proposition 2.2 implies the following characterization of the filtration
{L(s)}s>1.

Corollary 2.5. — {L(s)}s>1 is the minimal central filtration in L such
that L(1) = L and e ∈ N .

TOME 0 (0), FASCICULE 0



14 Victor ABRASHKIN

Proof. — It will be sufficient to verify that

e ∈ N ⇔ ∀s > 1, Sse ∈ Lm(K) + L(s+ 1)K .

The “if” part is obvious. The “only if” part can be proved by induction on
s via the following property:

If l′(s) ∈ L(s)K and Sl′(s) ∈ Lm(K) + L(s + 1)K then l′(s) ∈
S−1L(s)m(K) + L(s + 1)K (use that L(s)/L(s + 1) is free Z/pM -
module). �

2.5. Element e† ∈ G(LK)

Recall that Smod p generates the ideal (te∗0 ) in k[[t0]]. Therefore, the
projections of the elements of the set{

S−mtb | 1 6 b < e∗, gcd(b, p) = 1,m ∈ N
}
∪ {α0}

form a basis of O(K)/(σ − id)O(K) over WM (k).

Proposition 2.6. — There are V(0) ∈ L, x ∈ SN and V(b,m) ∈ Lk,
where m > 1, 1 6 b < e∗, gcd(b, p) = 1, such that
(a) e† :=

∑
m,b S

−mtbV(b,m) + α0V(0) ∈ N ;
(b) e† = (−σx) ◦ e ◦ x.

Proof. — Note that S ∈ σm(K) implies that the sets {t−a | a ∈ Z+(p)}
and {S−mtb | m ∈ N, gcd(b, p) = 1, 1 6 b < e∗} generate the same WM (k)-
submodules in O(K)/m(K). This implies the existence of V (0)

(0) ∈ L and
V

(0)
(b,m) ∈ Lk such that

(2.1) e ≡ e†0 modLm(K)

where e†0 :=
∑

(b,m) S
−mtbV

(0)
(b,m) + α0V

(0)
(0) .

For i > 1, let N (i) =
∑
s>i S

−sL(s)m(K). Then
• N (i) = S−iL(i)m(K) +N (i+1);
•
[
N (i),N

]
⊂ N (i+1).

In particular, relation (2.1) implies that e = e†0 + σx0 − x0, where x0 ∈
Lm(K), and we obtain

(2.2) (−σx0) ◦ e ◦ x0 ≡ e†0 modSN (2)

(use that x0, σx0 ∈ Lm(K) ⊂ SN (1)). Now we need the following lemma.
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Lemma 2.7. — Suppose M is a Zp-module and i0 ∈ N. Then for any
l ∈ S−i0Mm(K), there are l(0) ∈M, l̃ ∈ S−i0Mm(K) and l(b,m) ∈Mk, where
1 6 m 6 i0, gcd(p, b) = 1 and 1 6 b < e∗, such that

l =
∑
b,m

S−mtbl(b,m) + α0l(0) + σl̃ − l̃.

Proof of Lemma 2.7. — It will be sufficient to consider the case M = Zp.
In other words, we must prove the following statement:

For any s ∈ S−i0m(K), there are β(0) ∈ WM (Fp), s̃ ∈ S−i0m(K)
and β(b,m) ∈ WM (k), where 1 6 m 6 i0, gcd(b, p) = 1 and 1 6
b < e∗, such that

s =
∑
b,m

β(b,m)S
−mtb + α0β(0) + σs̃− s̃.

We can assume that s = ta0/Si0 , where 1 6 a0 < e∗, i0 ∈ N and our
lemma is proved for all elements s from pS−i0m(K) + ta0S−i0m(K).
If gcd (a0, p) = 1 there is nothing to prove. Otherwise, a0 = pa1 and

s = s′ + σ(s′) − s′ with s′ = ta1/S′i0 = ta1(p + S′′)/Si0 . It remains to
note that s′ ∈ pS−i0m(K) + ta0S−i0m(K), because S′′mod p ∈ (te0

0 ), where
e0 := e∗(1− 1/p), and a1 + e0 = a0/p+ e0 > a0 (use that a0 < e∗). �

Continue the proof of Proposition 2.6. Clearly, it is implied by the fol-
lowing lemma.

Lemma 2.8. — For all i > 0, there are xi ∈ SN , V (i)
(b,m) ∈ Lk and

V
(i)
(0) ∈ L such that:
(a1) xi+1 ≡ xi modSN (i+1);
(a2) V (i+1)

(b,m) ≡ V
(i)
(b,m) modL(i+ 2)k;

(a3) V (i+1)
(0) ≡ V (i)

(0) modL(i+ 2)
(b) if e†i =

∑
b,m S

−mtbV
(i)
(b,m) + α0V

(i)
0 then

(−σxi) ◦ e ◦ xi ≡ e†i modSN (i+2).

Proof of Lemma 2.8. — Use the elements V (0)
(b,m), V

(0)
(0) , e

†
0 and x0 from

the beginning of the proof of Proposition 2.6. Then part (b) holds for i = 0
by (2.2).
Let i0 > 1 and assume that our Lemma is proved for all i < i0. Let

l ∈ S−i0L(i0 + 1)m(K) be such that

e†i0−1 − (−σxi0−1) ◦ e ◦ xi0−1 ≡ lmodSN (i0+2) .

Apply Lemma 2.7 to M = L(i0 + 1) and l ∈ S−i0L(i0 + 1)m(K). This
gives us the appropriate elements l(b,m) ∈ L(i0 + 1)k, l(0) ∈ L(i0 + 1)
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and l̃ ∈ S−i0L(i0 + 1)m(K). Note that the elements l(b,m) are defined only
for 1 6 m 6 i0. Extend their definition by setting l(b,m) = 0 if m > i0.
Then the case i = i0 of Lemma 2.8 holds with V

(i0)
(b,m) = V

(i0−1)
(b,m) + l(b,m),

V
(i0)
(0) = V

(i0−1)
(0) + l(0) and xi0 = xi0−1 + l̃. (We use here that SN (i0+1) =

S−i0L(i0 + 1)m(K) + SN (i0+2).)
Lemma 2.8 and Proposition 2.6 are completely proved. �

Proposition 2.6(b) implies that the elements σnV(b,m), n ∈ Z/N0, to-
gether with V(0) form a system of free topological generators of Lk. Sup-
pose {βi}16i6N0 and {γi}16i6N0 are the Z/pM -bases of WM (k) from the
proof of Proposition 1.2. Proceeding similarly to that proof introduce the
elements

V(b,m),i :=
∑

n∈Z/N0

σn(βi)σn(V(b,m)) .

Then all V(b,m) can be recovered via the relation V(b,m) =
∑
i γiV(b,m),i. This

implies that the elements V(b,m),i together with V(0) form a system of free
topological generators of L. (Recall that L is a free object in the category
of Lie Z/pM -algebras of nilpotent class < p.) Therefore, we can introduce
the weight function wt on L by setting for all b,m, i, wt(V(b,m),i) = m and
wt(V(0)) = 1. Note that by Proposition 2.6(b) we have that e† ∈ N if and
only if e ∈ N . Now Proposition 2.2 implies the following corollary.

Corollary 2.9. — For any s > 1, L(s) = {l ∈ L | wt(l) > s}.

3. The groups G̃h and Gh

3.1. Automorphism h

Let S ∈ O(K) be the element introduced in Subsection 2.1. Let h0 ∈
Aut(K) be such that h0|k = id and h0(t0) = t0E(1, Smod p). Then h0
admits a lift to h ∈ AutO(K) such that h|WM (k) = id and h(t) = tE(1, S).
Recall that O(K) = WM (k)((t)). If n ∈ N then denote by hn(t) the n-th
superposition of the formal power series h(t).

Proposition 3.1. — For any n ∈ N, hn(t) ≡ tE(n, S) modSpm(K)

Proof. — If n = 1 there is nothing to prove. Suppose proposition is
proved for some n ∈ N. Then

hn+1(t) = hn(h(t)) ≡ tE(1, S)E(n, S(h(t))) mod m(K)S(h(t))p.
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Recall, cf. Subsection 2.2, that S =
∑
l>1 γl1t

l, where γl1 ∈ WM (k) and
γl1l = 0. Let l = l′pa with gcd(l′, p) = 1. Then γl1 ∈ pM−aWM (k).
With the above notation we have in WM (k)[[t]],

E(1, S)l = exp(paS + · · ·+ pSp
a−1

)l
′
E(1, Sp

a

)l
′
≡ 1 mod (pa, Sp).

Therefore (use that γl1pa = 0),

S(h(t)) ≡ S(tE(1, S)) ≡
∑
l

γl1t
lE(1, S)l ≡

∑
l

γl1t
l = SmodSp ,

and hn+1(t) ≡ tE(1, S)E(n, S) ≡ tE(n + 1, S) mod m(K)Sp (use that
S(h(t))p ≡ 0 modSp). �

3.2. Specification of lifts h<p

Note that h(t) = tαp
M−1 , where α = E(1, S0)p, and therefore, h com-

mutes with σ, cf. Remark in Subsection 1.1. Now suppose that h<p,0 ∈
AutK<p is a lift of h0. Then Proposition 1.1 provides us with a unique
h<p ∈ AutO(K<p) such that h<p|O(K) = h and h<p mod p = h<p,0. There-
fore, we can work with arbitrary lifts h<p,0 of h0 by working with the
appropriate lifts h<p of h. Note that all such lifts h<p commute with σ.
A lift h<p of h can be specified by the formalism of nilpotent Artin–

Schreier theory as follows.
• Define similarly to [1] the continuousWM (k)-linear operatorsR,S :
LK −→ LK as follows.

• Suppose α ∈ Lk.
• For n > 0, set R(tnα) = 0 and S(tnα) = −

∑
i>0 σ

i(tnα).
• For n = 0, set R(α)=α0(idL⊗Tr)(α), S(α)=

∑
06j<i<N0

σjα0 σ
iα,

where Tr : WM (k) −→WM (k) is induced by the trace map in k/Fp
and α0 ∈WM (k) with Trα0 = 1 was fixed in Subsection 1.4.

• For n = −n1p
m, gcd(n1, p) = 1, set R(tnα) = t−n1σ−mα and

S(tnα) =
∑

16i6m σ
−i(tnα).

Similarly to [1] we have the following lemma. (We use also the special case
M = Zp of Lemma 2.7.)

Lemma 3.2. — For any b ∈ LK,
(a) b = R(b) + (σ − idLK)S(b);
(b) if b = b1 + σc − c, where b1 ∈

∑
a∈Z+(p) t

−aLk + α0L and c ∈ LK
then R(b) = b1 and c− S(b) ∈ L;

(c) for any n > 0, R and S map S−nLm(K) to itself.
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According to Subsection 1.6, for the lift h<p ∈ AutO(K<p) of h (which
is attached to the lift h<p,0 of h0), we have that

h<p(f) = c ◦ (A⊗ idO(K<p))f .

Here c ∈ LK and A = Adh<p ∈ AutL (cf. Subsection 1.6 for the defini-
tion of Adh<p). Similarly to [1] it can be proved that the correspondence
h<p 7→ (c, A) is a bijection between the set of all lifts h<p of h and all
(c, A) ∈ LK ×AutL such that

(3.1) (idL ⊗ h)(e) ◦ c = (σc) ◦ (A⊗ idO(K))(e) .

This allows us to specify a choice of h<p step by step proceeding from
h<p modCs(LK<p) to h<p modCs+1(LK<p) where 1 6 s < p, as follows.
Suppose c and A are already chosen modulo s-th commutators, i.e. we

chose (cs, As) ∈ LK ×AutL satisfying the relation (3.1) modulo Cs(LK).
Then set cs+1 = cs + X and As+1 = As + A, where X ∈ Cs(LK) and

A ∈ Hom(L, Cs(L)). Then (3.1) implies that (here Ak = A⊗WM (k))

(3.2) σX −X +
∑

a∈Z0(p)

t−aAk(Da0)

≡ (idL ⊗ h)e ◦ cs − σcs ◦ (As ⊗ idO(K))emodCs+1(LK)

Now we can specify cs+1 and As+1 by setting X = S(Bs) and∑
a∈Z0(p) t

−aAk(Da0) = R(Bs), where Bs is the right-hand side of the
above recurrent relation. Note that the knowledge of all Ak(Da0) recov-
ers uniquely the values of A on generators of L and gives well-defined
As+1 ∈ AutL. Clearly, (cs+1, As+1) satisfies the relation (3.1) modulo
Cs+1(LK). Finally, we obtain the solution (c0, A0) := (cp, Ap) of (3.1) and
can use it to specify uniquely the lift h0

<p of h.

3.3. The group G̃h

Consider the group of all continuous automorphisms of K<p such that
their restriction to K belongs to the closed subgroup in AutK generated by
h0. These automorphisms admit unique lifts to automorphisms of O(K<p)
such that their restriction to O(K) belongs to the subgroup 〈h〉 of AutO(K)
generated by h, cf. the beginning of Subsection 3.2. Denote the group of
these lifts by G̃h.
Use the identification ηM from Subsection 1.4 to obtain a natural short

exact sequence of profinite p-groups

(3.3) 1 −→ G(L) −→ G̃h −→ 〈h〉 −→ 1
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For any s > 2, the s-th commutator subgroup Cs(G̃h) is a normal sub-
group in G(L). Therefore, Lh(s) := Cs(G̃h) is a Lie subalgebra of L. Set
Lh(1) = L. Clearly, for any s1, s2 > 1, [Lh(s1),Lh(s2)] ⊂ Lh(s1 + s2), in
other words, the filtration {Lh(s)}s>1 is central.

Theorem 3.3. — For all s ∈ N, Lh(s) = L(s).

Proof. — Use the notation from Subsection 2.5. Obviously, we have:

• L(s+ 1) = (K∗/K∗pM )(s+1) +L(s+ 1) ∩C2(L), where the WM (k)-
module (K∗/K∗pM )(s+1) is generated by all V(b,m) with m > s + 1
(for the definition of V(b.m) cf. Proposition 2.6) and L(s + 1) ∩
C2(L) =

∑
s1+s2=s+1 [L(s1),L(s2)];

• Lh(s+ 1) is the ideal in L generated by [Lh(s),L] and all elements
of the form (Adh<p)l ◦ (−l), where l ∈ Lh(s) and h<p is a lift of h.

Consider the elements V(0) and V(b,m),i introduced in the end of Sec-
tion 2). Recall that m ∈ N, 1 6 b < e∗ and gcd(b, p) = 1.

Lemma 3.4. — There is a lift h1
<p such that if (Adh1

<p)V(0) = Ṽ(0) and
for all b,m, i, (Adh1

<p)V(b,m),i = Ṽ(b,m),i then

(a) Ṽ(0) ≡ V(0) mod C2(L);
(b) Ṽ(b,m),i ≡ V(b,m),i + bV(b,m+1),i mod (L(m+ 2) + L(m+ 1) ∩ C2(L)).

We shall prove this Lemma below.
Note the following immediate applications of this lemma:

(a) if l ∈ L(s) then (Adh1
<p)l ◦ (−l) ∈ L(s+ 1);

(b) if l ∈ (K∗/K∗pM )(s+1) then there is an l′ ∈ (K∗/K∗pM )(s) such that
(Adh1

<p)l′ ◦ (−l′) ≡ lmodL(s+ 1) ∩ C2(L).

Now we can finish the proof of our theorem.
Clearly, Lh(1) = L(1).
Suppose s0 > 1 and for 1 6 s 6 s0, we have Lh(s) = L(s).
Then [Lh(s0),L] = [L(s0),L(1)] ⊂ L(s0 + 1) and applying (a) we obtain

that Lh(s0 + 1) ⊂ L(s0 + 1).
In the opposite direction, note that by inductive assumption,

L(s0 + 1) ∩ C2(L) =
∑

s1+s2=s0+1
[Lh(s1),Lh(s2)] ⊂ Lh(s0 + 1)

and then from (b) we obtain that (K∗/K∗pM )(s0+1) ⊂ Lh(s0 + 1). So,
L(s0 + 1) ⊂ Lh(s0 + 1). The theorem is completely proved. �
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Proof of Lemma 3.4. — Let

ẽ† := (Adh1
<p ⊗ idO(K))e† =

∑
i,b,m

tb

Sm
βiṼ(b,m),i + α(0)Ṽ(0) .

Similarly to Subsection 3.2 there is c1 ∈ LK such that

(3.4) (idL ⊗ h)e† ◦ c1 = (σc1) ◦ ẽ† ,

and the choice of h1
<p can be specified by an analog of the recurrent pro-

cedure from the end of Subsection 3.2.
Namely, set c11 = 0 and A1

1 = idL. Then for 1 6 s < p, (c1s+1, A
1
s+1) can

be defined as follows:
• Bs = (idL ⊗ h)e† ◦ c1s − (σc1s) ◦ (A1

s ⊗ idK)e†
• Xs = S(Bs), (As ⊗ idK)e† = R(Bs);
• c1s+1 = c1s +Xs, A1

s+1 = A1
s +As

This gives the system of compatible on 1 6 s 6 p solutions (c1s, A1
s) ∈

LK ×AutL of (3.4) modulo Cs(LK) and (c1, A1) := (c1p, A1
p) defines h1

<p.
Let

Ñ (2) :=
∑
i>2

S−i(L(i) ∩ C2(L))m(K) ⊂ N (2) .

Note that [N ,N ] ⊂ Ñ (2). Consider the following properties.
(1) (idL ⊗ h)(e†) = e† + e+

1 + e−1 modS2N , where e+
1 , e
−
1 ∈ SN and

e−1 =
∑
i,b,m

btb

Sm
βiV(b,m+1),i, e+

1 =
∑
b,i

btbβiV(b,1),i

(use that h(S) ≡ S(h(t)) ≡ SmodSp, cf. the proof of Proposi-
tion 3.1).

(2) ẽ† ≡ e†modSN and c1 ∈ SN (use that for all s, Bs ∈ SN and R
and S map SN to itself).

(3) (−σc1) ◦ (idL⊗ h)(e†) ◦ c1 ≡ (c1− σc1) + e†+ e†1 modS2N +SÑ (2)

(use that c ∈ SN and (idL ⊗ h)(e†) ∈ N )
(4) Apply R to the congruence from c), use that S2N + SÑ (2) is

mapped by R to itself and R(c1 − σc1) = R(e+
1 ) = 0

ẽ† ≡
∑
i,b,m

tb

Sm
βi
(
V(b,m),i + bV(b,m+1),i

)
+ α0V(0) modS2N + SÑ (2) .

It remains to note that the last congruence is equivalent to the statement
of our lemma. �
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3.4. The group Gh

Let Gh = G̃h/G̃p
M

h Cp(G̃h).

Proposition 3.5. — Exact sequence (3.3) induces the following exact
sequence of p-groups

(3.5) 1 −→ G(L)/G(L(p)) −→ Gh −→ 〈h〉mod 〈hp
M

〉 −→ 1

Proof. — Set

M := N + L(p)K =
∑

16s<p
S−sL(s)m(K) + L(p)K

M<p :=
∑

16s<p
S−sL(s)m(K<p) + L(p)K<p

where m(K<p) = WM (m<p)∩O(K<p) and m<p is the maximal ideal of the
valuation ring of K<p.
Then M has the induced structure of Lie WM (k)-algebra (use the Lie

bracket from LK) and Sp−1M is an ideal in M. Similarly, M<p is a
Lie WM (k)-algebra (containingM as its subalgebra) and Sp−1M<p is an
ideal in M<p. Note that e ∈ M, f ∈ M<p, Sp−1M<p ∩M = Sp−1M,
and we have a natural embedding of M̄ := M/Sp−1M into M̄<p :=
M<p/S

p−1M<p. For i > 0, we have also (idL ⊗ h− idM)iM⊂ SiM.
Consider the orbit of f̄ := f modSp−1M<p with respect to the natural

action of G̃h ⊂ AutO(K<p) on M̄<p. Prove that the stabilizerH of f̄ equals
G̃p

M

h Cp(G̃h).
If l ∈ G(L) then η−1

M (l) ∈ G<p sends f to f ◦ l. This means that for
l ∈ L ∩H we have

l ∈ Sp−1M<p ∩ L = Sp−1M∩L = L(p)K ∩ L = L(p) = Cp(G̃h) .

Therefore, H ∩G(L) = Cp(G̃h) ⊂ H and we obtain the embedding

κ : G(L)/G(L(p)) −→ G̃h/H .

Now consider the lift h0
<p from the end of Subsection 3.2.

Note that G̃p
M

h modCp(G̃h) is generated by h0pM

<p . Indeed, any finite p-
group of nilpotent class < p is P -regular, cf. [10] Subsection 12.3. In partic-
ular, for any g ∈ G(L), (h0

<p ◦g)pM ≡ h0pM

<p ◦g′modCp(G̃h) , where g′ is the
product of pM -th powers of elements from G(L), but G(L) has period pM .

As earlier, h0
<pf = c0◦(A0⊗idK)f . Note that c0 ∈ SM (proceed similarly

to the proof of Lemma 3.4(b)).
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Then

h0pM

<p (f)

= (id⊗ h)p
M−1

(
c0 ◦ (A0 ⊗ h−1)c0 ◦ · · · ◦ (A0 ⊗ h−1)p

M−1c0
)

◦ (A0pM

⊗ id)f .

Clearly, (A0 − idL)pL ⊂ L(p) and, therefore, (A0pM ⊗ id)f̄ = f̄ .
Similarly, B = A0 ⊗ h−1 is an automorphism of the Lie algebraM, and

for all s > 0, (B − idM)(SsM) ⊂ Ss+1M.

Lemma 3.6. — For any m ∈ SM, m ◦B(m) ◦ · · · ◦BpM−1m ∈ SpM.

Proof. — Consider the Lie algebra M = SM/SpM with the filtration
{M(i)}i>1 induced by the filtration {SiM}i>1. This filtration is central,
i.e. for any i, j > 1, [M(i),M(j)] ⊂ M(i + j). In particular, the nilpotent
class of M is < p.
The operator B induces the operator on M which we denote also by B.

Clearly, B = ẽxpB where B is a differentiation on M such that for all i > 1,
B(M(i)) ⊂M(i+ 1).
Let M̃ be a semi-direct product ofM and the trivial Lie algebra (Z/pM )w

via B. This means that M̃ = M ⊕ (Z/pM )w as Z/pM -module, M and
(Z/pM )w are Lie subalgebras of M̃ and for any m ∈ M, [m,w] = B(m).
Clearly, C2(M̃) = [M̃, M̃] ⊂M(2). This implies that M̃ has nilpotent class
< p and we can consider the p-group G(M̃). This group has nilpotent class
< p and period pM (because for any m̄ ∈ M̃, its pM -th power in G(M̃)
equals pMm̄ = 0).
Note that the conjugation by w in G(M̃) is given by the automorphism

ẽxpB = B. Indeed, if m ∈M then

B(m) = (ẽxpB)m =
∑

06n<p
Bn(m)/n! = (−w) ◦m ◦ w

(use very well-known formula in a free associative algebra Q[[X,Y ]],

exp(−Y ) exp(X) exp(Y ) = exp(X + . . .+ (ad nY )X/n! + . . .) ,

where adY : X 7→ [X,Y ]).
In particular, for any element m̄ = mmodN (p) ∈M, we have w1 ◦ m̄ =

B(m̄) ◦w1, where w1 = −w. Therefore, 0 = (m̄ ◦w1)pM = m̄ ◦B(m̄) ◦ · · · ◦
Bp

M−1(m̄) ◦ wp
M

1 , and it remains to note that wp
M

1 = 0. �

Applying the above Lemma we obtain that

c0 ◦ (A0 ⊗ h−1)c0 ◦ · · · ◦ (A0 ⊗ h−1)p
M−1c0 ∈ N (p) ⊂ Sp−1M
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and, therefore, h0pM

<p (f̄) = 0.
Thus, we proved that G̃p

M

h Cp(G̃h) ⊂ H.
Suppose g = hm<p l ∈ H with some l ∈ G(L). Then g(f) = b ◦ f where

b ∈ Sp−1M<p. Note that σ(b) ∈ Sp−1M<p. Then

g(e) ◦ b ◦ f = g(e) ◦ g(f) = g(σf) = σb ◦ σf = σb ◦ e ◦ f

implies that g(e) ≡ emodSp−1M. Thus (id⊗ h)m(e) ≡ emodSp−1M.
Now use that e ≡ e†modLm(K) +C2(L)K, cf. the beginning of the proof

of Proposition 2.6.
Clearly, Lm(K) + L(p)K ⊃ Sp−1M and, therefore, for the element

e†<p :=
∑
i,b

∑
16m<p

tb

Sm
βiV(b,m),i

we obtain (idL ⊗ h)m(e†<p) ≡ e
†
<p modLm(K) + C2(LK). But

hm(e†<p) ≡
∑
i,b

∑
16m<p

tbE(bm, S)
Sm

βiV(b,m),i modLm(K) + L(p)K

Now following the coefficients for V(b,p−2),i we obtainm ≡ 0 mod pM . There-
fore, l ∈ H ∩G(L) = Cp(G̃h) and H ⊂ G̃p

M

h Cp(G̃h).
Finally, we have G̃h/H = Gh, HmodCp(G̃h) = 〈hp

M

<p 〉 and, therefore,
Cokerκ = 〈h〉mod 〈hpM 〉. �

Corollary 3.7. — If Lh is a Lie Z/pM algebra such that Gh = G(Lh)
then (3.5) induces the following short exact sequence of Lie Z/pM -algebras

0 −→ L/L(p) −→ Lh −→ (Z/pM )h −→ 0

Remark. — In [1] we studied the structure of the above Lie algebra
Lh in the case M = 1. The case of arbitrary M will be considered in a
forthcoming paper.

3.5. Ramification estimates

Use the identification from Subsection 1.3, ηM : Gal(K<p/K) = G<p '
G(L) and set for all for s ∈ N, K[s,M ] := KG(L(s+1))

<p . Denote by v(s,M)
the maximal upper ramification number of the extension K[s,M ]/K. In
other words,

v(s,M) = max{v | G(v)
<p acts non-trivially on K[s,M ]} .
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Proposition 3.8. — For all s ∈ N, v(s,M) = pM−1(e∗s − 1) (for the
definition of e∗ cf, Subsection 2.1).

Proof. — Recall, cf. Subsection 1.7, that for any v > 0, the ramification
subgroups G(v)

<p are identified with the ideals L(v) of L, and for sufficiently
large N = N(v), the ideal L(v)

k is generated by all σnF0
γ,−N , where γ > v,

n ∈ Z/N0 and the elements F0
γ,−N are given by (1.3).

Let e0 = e∗(1− 1/p).

Lemma 3.9. — If a ∈ Z+(p), u ∈ N and 0 6 c < M then the following
two conditions are equivalent:
(a) taS−u ∈ m(K) mod pcO(K);
(b) a > e∗u+ e0(c− 1).

Proof of Lemma 3.9. — Proposition 2.1(c) implies that

taS−u = ta−ue
∗
η0

1 +
∑
i>1

t−ie
0
ηi(u)pi


where η0 and all ηi(u) are invertible elements of WM (k)[[t]] ⊂ O(K). There-
fore, taS−u ∈ m(K) mod pcO(K) if and only if for all 1 6 i < c, ta−ue∗−ie0 ∈
m(K), i.e. a− ue∗ − (c− 1)e0 > 0. The lemma is proved. �

Corollary 3.10. — Dan ∈ L(u)k mod pcO(K) if and only if we have
that a > e∗(u− 1) + (c− 1)e0 + 1.

Lemma 3.11. — Suppose N > 0.
(a) If γ > pM−1(e∗s− 1) then F0

γ,−N ∈ L(s+ 1)k;
(b) if γ = pM−1(e∗s− 1) then

F0
γ,−N ≡ pM−1De∗s−1,M−1 modL(s+ 1)k .

Proof of Lemma 3.11. — For any γ > 0, F0
γ,−N is a Z/pM -linear com-

bination of the monomials of the form

X(b ; a1, . . . , ar;m2, . . . ,mr)

= pba1[. . . [Da1,b−m1 , Da2,b−m2 ], . . . , Dar,b−mr
] ,

where 0 6 b < M , 1 6 r < p, all ai ∈ Z0(p), 0 = m1 6 m2 6 · · · 6 mr, and

pb
(
a1 + a2

pm2
+ · · ·+ ar

pmr

)
= γ .

For 1 6 i 6 r, let ui ∈ Z be such that (note that pM |e∗, pM−1|e0 and if
M = 1 then M − b− 1 = 0)

1 + e∗(ui − 1) + e0(M − b− 1) 6 ai < e∗ui + e0(M − b− 1) .
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This means that all Dai,b−mi
∈ L(ui)k mod pM−bLk .

Suppose X(b ; a1, . . . , ar;m2, . . . ,mr) /∈ L(s+1)k. This implies that u1 +
· · ·+ ur 6 s and, therefore, a1 + · · ·+ ar 6 e∗s+ re0(M − b− 1)− r.

If γ > pM−1(e∗s− 1) then a1 + · · ·+ ar > pM−b−1(e∗s− 1) and

e∗s+ re0(M − b− 1)− r > pM−b−1(e∗s− 1).

Set c = M − b− 1, then 0 6 c < M and

(pc − 1)(e∗s− 1) 6 r(e0c− 1) .

If c = 0 then r 6 0, contradiction.
If c > 1 then (use that r 6 p− 1 and s > 1)

(1 + p+ · · ·+ pc−1)(e∗ − 1) 6 e0c− 1 .

But then e∗ = e0(1+1/(p−1)) > e0 +1 implies that 1+p+ · · ·+pc−1 < c.
This contradiction proves (a).
Suppose γ = pM−1(e∗s−1). Then the expression for F0

γ,−N contains the
term pM−1De∗s−1,M−1. Take (with above notation) any another monomial
X(b; a1, . . . , ar;m2, . . . ,mr) from the expression of F0

γ,−N . Clearly, r > 2.
As earlier, the assumption that this monomial does not belong to L(s+1)k
implies that

(pc − 1)(e∗s− 1) 6 r(e0c− 1) + 1 .
If c = 0 then r 6 1, contradiction.
If c > 1 then again use that r 6 p− 1 to obtain

(1 + p+ · · ·+ pc−1)(e∗s− 1) 6 e0c− 1 + 1/(p− 1) < e0c

and note that the left-hand side of this inequality > ce0 (use that e∗s−1 >
e∗ − 1 > e0). The contradiction. The lemma is completely proved. �

It remains to note that Lemma 3.11 implies that

max{v | L(v) 6⊂ L(s+ 1)} = pM−1(e∗s− 1) .

Proposition 3.8 is completely proved. �

4. Applications to the mixed characteristic case

LetK be a finite field extension of Qp with the residue field k ' FpN0 and
the ramification index eK . Let π0 be a uniformising element in K. Denote
by K̄ an algebraic closure of K and set Γ = Gal(K̄/K). Assume that K
contains a primitive pM -th root of unity ζM .
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4.1. The subgroup Γ̃

For n ∈ N, choose πn ∈ K̄ such that πpn = πn−1. Let K̃ =
⋃
n∈NK(πn),

Γ<p := Γ/ΓpM

Cp(Γ) and Γ̃ = Gal(K̄/K̃). Then Γ̃ ⊂ Γ induces a continuous
group homomorphism i : Γ̃ −→ Γ<p.

We have Gal(K(πM )/K) = 〈τ0〉Z/p
M , where τ0(πM ) = πMζM . Let j :

Γ<p −→ Gal(K(πM )/K) be a natural epimorphism.

Proposition 4.1. — The following sequence

Γ̃ i−→ Γ<p
j−→ 〈τ0〉Z/p

M

−→ 1

is exact.

Proof. — For n > M , let ζn ∈ K̄ be such that ζpn = ζn−1.
Consider K̃ ′ =

⋃
n>M K(πn, ζn). Then K̃ ′/K is Galois with the Galois

group Γ
K̃′/K

= 〈σ, τ〉. Here for any n > M and some s0 ∈ Z, σζn =
ζ1+pMs0
n , σπn = πn, τ(ζn) = ζn, τπn = πnζn and σ−1τσ = τ (1+pMs0)−1 .
Therefore, Γp

M

K̃′/K
= 〈σpM

, τp
M 〉 and for the subgroup of second commu-

tators we have C2(Γ
K̃′/K

) ⊂ 〈τpM 〉 ⊂ Γp
M

K̃′/K
. This implies that

Γp
M

K̃′/K
Cp(ΓK̃′/K) = 〈σp

M

, τp
M

〉

and for Γ
K̃′/K

(M) := Γ
K̃′/K

/Γp
M

K̃′/K
Cp(ΓK̃′/K), we obtain a natural exact

sequence

〈σ〉 −→ Γ
K̃′/K

(M) −→ 〈τ〉mod 〈τp
M

〉 = 〈τ0〉Z/p
M

−→ 1 .

Note that Γ
K̃′

together with a lift σ̂ ∈ Γ̃ of σ generate Γ̃. The above short
exact sequence implies that Ker

(
Γ<p −→ 〈τ0〉Z/p

M
)
is generated by σ̂ and

the image of Γ
K̃′

. So, this kernel coincides with the image of Γ̃ in Γ<p. �

4.2. Special choice of S and S0

Let R be Fontaine’s ring. We have a natural embedding k ⊂ R and an
element t0 = (πn mod p)n>0 ∈ R. Then we can identify the field k((t0)) with
the field K from Sections 1-3. If R0 = FracR then K is a closed subfield
of R0 and the theory of the field-of-norms functor identifies R0 with the
completion of the separable closure Ksep of K in R0. Note that R is the
valuation ring of R0 and denote by mR the maximal ideal of R.
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This allows us to identify G = Gal(Ksep/K) with Γ̃ ⊂ Γ ⊂ AutR0. This
identification is compatible with the appropriate ramification filtrations.
Namely, if ϕ

K̃/K
is the Herbrand function of the (arithmetically profinite)

field extension K̃/K then for any v > 0, G(v) = Γ(v1) ∩ Γ̃, where v1 =
ϕ
K̃/K

(v).
Let as earlier, G<p = G/GpM

Cp(G). Then the embedding G = Γ̃ ⊂ Γ
induces a natural continuous morphism ι of the infinite group G<p to the
finite group Γ<p. Therefore, by Proposition 4.1 we obtain the following
exact sequence

(4.1) G<p
ι−→ Γ<p

j−→ 〈τ0〉Z/p
M

−→ 1 .

Let ζM = 1 +
∑
i>1[βi]πi0 with all βi ∈ k. Consider the identification

of rings R/teK
0 ' OK̄/p given by (r0, . . . , rn, . . . ) 7→ r0. If ε = (ζn)n>0

is Fontaine’s element such that ζM is our fixed pM -th root of unity then
we have in WM (R) the following congruence (as earlier, t = (t0, . . . , 0) ∈
WM (R))

(4.2) σ−Mε ≡ 1 +
∑
i>1

βit
i mod (teK , p) .

Now we can specify the choice of the elements S0, S ∈ m(K), cf. Subsec-
tion 2.1, by setting E(1, S0) = 1 +

∑
i βit

i and S = [p]M (S0). Note that
Smod p generates the ideal (te∗0 ) in OK = k[[t0]], where e∗ = peK/(p − 1).
Now congruence (4.2) can be rewritten in the following form

σ−Mε ≡ E(1, S0) mod (σ−1Sp−1, p) .

Applying σ we obtain

σ−M+1ε ≡ E(1, [p]S0) mod (Sp−1, p) ,

and then taking pM−1-th power

ε ≡ E(1, S) modSp−1WM (R) .

4.3. The lifts η<p

Let vK be the extension of the normalized valuation on K to R0. Consider
a continuous field embedding η0 : K −→ R0 compatible with vK. Denote
by Iso(η0,K<p, R0) the set of all extensions η<p,0 of η0 to K<p. This set is
a principal homogeneous space over G<p = G(L).

TOME 0 (0), FASCICULE 0



28 Victor ABRASHKIN

Choose a lift η : O(K) −→WM (R0) such that ηmod p = η0 and ησ = ση.
Proceeding similarly to Subsection 1.1 we can identify the set of all lifts
η0,<p of η0 from Iso(η0,K<p, R0) with the set of all (commuting with σ)
lifts η<p of η from Iso(η,O(K<p),WM (R0)).
Specify uniquely each lift η<p by the knowledge of η<p(f) ∈ LR0 in the

set of all solutions f ′ ∈ LR0 of the equation σf ′ = η(e) ◦ f ′. (The elements
e ∈ LK and f ∈ LK<p

were chosen in Subsection 1.4.)
Consider the appropriate submodules M ⊂ LK, M<p ⊂ LK<p

from
Subsection 3.4 and define similarly

MR0 =
∑

16s<p
S−sL(s)m(R) + L(p)R0 ⊂ LR0 ,

where m(R) = WM (mR). We know that e ∈ M, f ∈ M<p and for similar
reasons, all η<p(f) ∈MR0 .

Lemma 4.2. — With above notation suppose that

η(e) ≡ emodSp−1MR0 .

Then there is c ∈ Sp−1MR0 such that η(e) = σc ◦ e ◦ (−c).

Proof. — Note that Sp−1MR0 is an ideal inMR0 and for any i ∈ N and
m ∈ Sp−1Ci(MR0), there is c ∈ Sp−1Ci(MR0) such that σc− c = m. (Use
that σ is topologically nilpotent on Sp−1Ci(MR0).)
Therefore, there is c1 ∈ Sp−1MR0 such that η(e) = e + σc1 − c1. This

implies that η(e) ◦ c1 ≡ σc1 ◦ emodSp−1C2(MR0). Similarly, there is c2 ∈
Sp−1C2(MR0) such that η(e) ◦ c1 + c2 = σc2 +σc1 ◦ e0 and η(e0) ◦ c1 ◦ c2 ≡
σc2 ◦ σc1 ◦ e0modSp−1C3(MR0), and so on.
After p − 1 iterations we obtain for 1 6 i < p the elements ci ∈

Sp−1Ci(MR0) such that

η(e) ◦ (c1 ◦ · · · ◦ cp−1) = σ(cp−1 ◦ · · · ◦ c1) ◦ e.

The lemma is proved. �

The above lemma implies the following properties:

Proposition 4.3.
(a) If η(e) ≡ emodSp−1MR0 then for any η<p ∈ Iso(η,K<p, R0), there

is a unique l ∈ G(L) modG(L(p)) such that

η<p(f) ≡ f ◦ lmodSp−1MR0 .

(b) Suppose η′, η′′ : O(K) −→WM (R0) are such that

η′(t) ≡ η′′(t) modSp−1WM (mR) .
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If η′<p ∈ Iso(η′, O(K<p),WM (R0)) and η′′<p ∈ Iso(η′′, O(K<p),
WM (R0)) then there is a unique l ∈ G(L) such that

η′<p(f) ≡ η′′<p(f) ◦ lmodSp−1MR0 .

4.4. Upper ramification numbers v(K[s,M ]/K)

The action of Γ = Gal(K̄/K) on R0 is strict and, therefore, the elements
g ∈ Γ can be identified with all continuous field embeddings g : Ksep → R0
such that g|K belongs to the set 〈τ0〉 = {τa0 | a ∈ Zp}.
Extend τ0 now to a continuous embedding τ : O(K) −→ WM (R0)

uniquely determined by the condition τ(t) = tε. Clearly, τ commutes with
σ. Then the results of Subsection 1.1 imply that the elements of Γ are iden-
tified with the continuous embeddings g : O(Ksep) → WM (R0) such that
g|O(K) belongs to the set 〈τ〉.
Consider h0 ∈ Aut(K) such that h0(t0) = t0E(1, Smod p) and h0|k = id.

Then its lift h ∈ AutO(K) such that h(t) = tE(1, S) commutes with σ and
there are the appropriate groups G̃h and Gh from Section 3.
Clearly, h(t) ≡ τ(t) modSp−1mR and we can apply Proposition 4.3(b).

This implies that the Γ-orbit of f modSp−1MR0 is contained in the G̃h-
orbit of f modSp−1MR0 . Therefore, there is a map of sets κ : Γ −→ Gh
uniquely determined by the requirement that for any g ∈ Γ,

(idL ⊗ g)f ≡ (idL ⊗ κ(g))f modSp−1MR0 .

(Use that Gh strictly acts on the G̃h-orbit of f modSp−1MR0 .)

Proposition 4.4. — κ induces a group isomorphism κ<p : Γ<p −→ Gh.

Proof. — Suppose g1, g ∈ Γ. Let c ∈ LK and A ∈ AutL be such that
(idL ⊗ κ(g))f = c ◦ (A⊗ idK<p)f . Then we have the following congruences
modulo Sp−1MR0

(idL ⊗ κ(g1g))f ≡ (idL ⊗ g1g)f ≡ (idL ⊗ g1)(idL ⊗ g)f
≡ (idL ⊗ g1)(idL ⊗ κ(g))f ≡ (idL ⊗ g1)(c ◦ (A⊗ idK<p)f)
≡ (idL ⊗ g1)c ◦ (A⊗ g1)f ≡ (idL ⊗ κ(g1))c ◦ (A⊗ κ(g1))f
≡ (idL ⊗ κ(g1))(c ◦ (A⊗ idK<p

)f) ≡ (idL ⊗ κ(g1))(idL ⊗ κ(g))f
≡ (idL ⊗ κ(g1)κ(g))f

and, therefore, κ(g1g) = κ(g1)κ(g) (use that Gh acts strictly on the orbit
of f).
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Therefore, κ factors through the natural projection Γ→ Γ<p and defines
the group homomorphism κ<p : Γ<p → Gh.

Recall that we have the field-of-norms identification Γ̃ = G and, therefore,
κ<p identifies the groups κ(Γ̃) and G(L/L(p)) ⊂ Gh. Besides, κ induces a
group isomorphism of 〈τ0〉Z/p

M and 〈h0〉Z/p
M . Now Proposition 4.1 implies

that κ<p is isomorphism. �

Under the isomorphism κ<p, the subfields K[s,M ] ⊂ K<p, where 1 6 s <
p (cf. Subsection 3.5), give rise to the subfields K[s,M ] ⊂ K<p such that
Gal(K[s,M ]/K) = Γ/ΓpM

Cs+1(Γ). In other words, the extensions K[s,M ]
appear as the maximal p-extensions of K with the Galois group of period
pM and nilpotent class s.

Using that the identification G = Γ̃ is compatible with ramification fil-
trations, cf. Subsection 4.2, we obtain the following result about the maxi-
mal upper ramification numbers of the field extensions K[s,M ]/K, where
M ∈ N and 1 6 s < p.

Theorem 4.5. — If [K : Qp] < ∞, eK is the ramification index of K
and ζM ∈ K then for 1 6 s < p,

v(K[s,M ]/K) = eK

(
M + s

p− 1

)
− 1− δ1s

p
.

Proof. — Note first, that the Herbrand function ϕ
K̃/K

(x) is continuous
for all x > 0, ϕ

K̃/K
(0) = 0 and its derivative ϕ′

K̃/K
equals 1 if x ∈ (0, e∗)

and equals p−m, if m ∈ N and x ∈ (e∗pm−1, e∗pm).
From Proposition 3.8 we obtain that

v(K[s,M ]/K) = max
{
v(K(πM )/K), ϕ

K̃/K
(pM−1(se∗ − 1))

}
.

Note that v(K(πM )/K) = ϕ
K̃/K

(pM−1e∗) = e∗+ eK(M −1) and, there-
fore,

v(K[1,M ]/K) = v(K(πM )/K) = eK

(
M + 1

p− 1

)
.

If 2 6 s < p then v(K[s,M/K) equals

ϕ
K̃/K

(pM−1(se∗ − 1)) = ϕ
K̃/K

(pM−1e∗) + pM−1(se∗ − 1)− pM−1e∗

pM

= eK

(
M + s

p− 1

)
− 1
p
. �
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