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GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS
OF PERIOD p" AND NILPOTENT CLASS < p

by Victor ABRASHKIN

ABSTRACT. — Suppose K is a finite field extension of Q, containing a p™-th
primitive root of unity. For 1 < s < p denote by K|s, M] the maximal p-extension of
K with the Galois group of period p™ and nilpotent class s. We apply the nilpotent
Artin—Schreier theory together with the theory of the field-of-norms functor to give
an explicit description of the Galois groups of K|[s, M]/K. As application we prove
that the ramification subgroup of the absolute Galois group of K with the upper
index v acts trivially on K{[s, M] iff v > ex (M + s/(p — 1)) — (1 — 815)/p, where
e is the ramification index of K and 015 is the Kronecker symbol.

RESUME. —  Soit K une extension finie de Q) contenant une racine pM_ieme
primitive de 'unité. Pour 1 < s < p on note K[s, M] la p-extension maximale de
K dont le groupe de Galois est de période p™ et de classe de nilpotence s. En
utilisant la théorie d’Artin—Schreier nilpotente et la théorie du corps des normes
on donne une description explicite du groupe de Galois de K[s, M]/K. Comme
application de ce résultat on montre que le sous-groupe de ramification du groupe
de Galois absolu de K de ramification supérieure v agit trivialement sur K{s, M]
si et seulement si v > ex(M + s/(p — 1)) — (1 — d15)/p, ol ex est 'indice de
ramification de K et 15 est le symbole de Kronecker.

Introduction

Everywhere in the paper M € N is fixed and p # 2 is prime.

Let K be a complete discrete valuation field of characteristic 0 with
finite residue field k& ~ F,,, where o = p™°, Ny € N. Fix an algebraic
closure K of K and denote by K <p(M) the maximal p-extension of K in
K with the Galois group of nilpotent class < p and exponent p™. Then
I, (M) := Gal(K,(M)/K) = T/T?" C,(T), where I’ = Gal(K/K) and
Cp(I') is the closure of the subgroup of commutators of order > p.

Keywords: local fields, upper ramification numbers.
Math. classification: 11S15, 11S20.



2 Victor ABRASHKIN

Let {T(")},>¢ be the ramification filtration of T' in upper numbering [14].
The importance of this additional structure on the Galois group I' (which
reflects arithmetic properties of K) can be illustrated by the local analogue
of the Grothendieck Conjecture [5, 6, 13]: the knowledge of I together with
the filtration {F(”) }u>o is sufficient to recover uniquely the isomorphic class
of K in the category of complete discrete valuation fields.

Let {T'<,(M)®},> be the induced ramification filtration of T',(M).
Then the problem of arithmetical description of I'«, (M) is the problem of
explicit description of the filtration {T'<, (M) },>¢ in terms of generators
of I'cp)(M).

An analogue of this problem was studied in [2, 3, 4] in the case of
local fields K of characteristic p with residue field k. More precisely, let
G = Gal(Ksep/K) and Gp(M) = Q/QPMCP(Q). In [2, 3] we developed a
nilpotent version of the Artin—Schreier theory which allows us to construct
identification of profinite groups G<,(M) = G(L). Here L is a profinite Lie
7Z/p™-algebra of nilpotent class < p and G(£) is the pro-p-group, obtained
from L by the Campbell-Hausdorff composition law, cf. Subsection 1.2 be-
low for more details and [7, Subsection 1.1] for non-formal comments about
nilpotent Artin—Schreier theory.

On the one hand, the above identification of G, (M) with G(£) depends
on a choice of uniformising element in K and, therefore, is not functorial (in
particular, it can’t be used directly to develop a nilpotent analog of classical
local class field theory). On the other hand, the ramification subgroups
Gep(M )(”) can be now described in terms of appropriate ideals £(*) of the
Lie algebra L. The definition of these ideals essentially uses the extension of
scalars Ly := LW (k) of L (such operation does not exist in the category
of p-groups) together with the appropriate explicit system of generators of
Ly, cf. Subsection 1.4. This justifies the advantage of the language of Lie
algebras in the theory of p-extensions of local fields.

In this paper we apply the above characteristic p results to the study of
similar properties in the mixed characteristic case, i.e. to the study of the
group ', (M) together with its ramification filtration. Our main tool is
the Fontaine-Wintenberger theory of the field-of-norms functor [15]. Note
also that we assume that K contains a primitive p™-th root of unity and
our methods generalize the approach from [1] where we considered the case
M = 1. In some sense our theory can be treated as nilpotent version of
Kummer’s theory in the context of complete discrete valuation fields. As a
result, we identify I'<,(M) with the group G(L), where L is a Lie Z/p™-
algebra and for an appropriate ideal J of L, we have the following exact

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 3

sequence of Lie algebras
(0.1) 0—L/J—L—Cy—0.

Here Oy is a cyclic group of order pM with the trivial structure of Lie
algebra over Z/p™.

As a first step in the study of L, we give an explicit description of the
ideal J. More generally, if Cs(L) is the closure of the ideal of commutators
of order > s in L, then for s > 2, we have Cs(L) C £/J and exact
sequence (0.1) induces the exact sequences

0— L/L(s) — L/Cs(L) — Cpyy — 0,

where all £(s) are ideals in £. The main result of Section 3, Theorem 3.3,
describes these ideals £(s) with 2 < s < p and gives in particular that
J = L(p).

Extension (0.1) splits in the category of Z/p™-modules and its structure
can be given by explicit construction of a lift 7, of a generator of C
to L and the appropriate differentiation adr., € End(L£/J). The study of
ad7<, will be done in the next paper via methods used in the case M =1
in [1].

In Section 4 we apply our approach to find for 1 < s < p, the maxi-
mal upper ramification numbers v(K|[s, M]/K) of the maximal extensions
K|[s, M] of K with Galois groups of period p™ and nilpotent class s. (The
maximal upper ramification number for a finite extension K'/K in K is the
maximal vy such that the ramification subgroups I'") act trivially on K’
if v > vg.) This result can be stated in the following form, cf. Theorem 4.5
from Section 4:

If[K : Qp] < o0 and (y € K then for 1 < s <p,

o(K[s, M]/K) = ex <M+ i ) _120a

p—1 p
where ey is the ramification index of K /Q,, and ¢ is the Kronecker
symbol.
Remark. — The case s = 1 is very well-known and can be established

without the assumption (3, € K. Is it possible to remove this restriction
when s > 17

Notation. — If 9 is an R-module then its extension of scalars M R S
will be very often denoted by Mg, cf. also another agreement in Subsec-
tion 1.1. Very often we drop off the indication to M from our notation and
use just K<y, 'y, G<p ete. instead of Ko, (M), T'<,(M),G<p (M), ete.

TOME 0 (0), FASCICULE 0



4 Victor ABRASHKIN

1. Preliminaries

Let K be a complete discrete valuation field of characteristic p with
residue field k ~ F,, qo = p™No_ and fixed uniformiser ty. In other words,
K = k((to)).

As earlier, G = Gal(Ksep/K), Kep = K<p(M) is the subfield of Ksep
fixed by QPMCP(Q) and Gop = Gp(M) = Gal(K<,/K). The ramification
filtration of G, was studied in details in [2, 3, 4]. We overview these results
in the next subsections.

1.1. Compatible system of lifts modulo p

The uniformizer ty of I gives a p-basis for any separable extension £
of K, i.e. {1,t,... ,tgil} is a basis of the £P-module £. We can use ty to
construct a functorial on £ (and on M) system of lifts O(E)(= O (E)) of
& modulo pM. Recall that these lifts appear in the form Wy (™ ~1E)[t],
where W), is the functor of Witt vectors of length M, ¢ is the Frobenius
morphism of taking p-th power and t = (¢, 0,...,0) € W (K).

Note that t € O(K) C W (K), tmod p = tg and ot = tP. The lift O(K) is
naturally identified with the algebra of formal Laurent series Wy (k)((¢)) in
the variable ¢ with coefficients in Wy, (k). A lift o of the absolute Frobenius
endomorphism of K to O(K) is uniquely determined by the condition ot =
tP. For a separable extension £ of K we then have an extension of the
Frobenius o from & to O(E)(= War(eM~1E)[t]). As a result, we obtain
a compatible system of lifts of the Frobenius endomorphism of Ky, to
O(Ksep) = ligO(S). For simplicity, we shall denote this lift also by o.
Note that o ig induced by the standard Frobenius endomorphism W, (o)
of War(Ksep) D O(Ksep)-

Suppose 19 € Aut K and let Whs(no) be the induced automorphism of
W (). If War(no)(t) € O(K) then n := War(no)low) is a lift of 1o to
O(K), i.e. n € Aut O(K) and nmodp = 1. With the above notation and
assumption (in particular, n(t) € O(K)) we have even more.

PrOPOSITION 1.1. — Suppose & is separable over I, ngg € Aut & and
7750|]c = T1o- Then ne ‘= WM(T]go)|O(5) is a lift of Neo to 0(8) such that
775|0(1c) =1.

Proof. — Indeed, using that O(€) = Wy (6™ ~1E)[t], we obtain

ne(War (o™ 71)) = Wi (ngo) (W (M 71€)) € War (0™ 1)) C O(€),

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 5

and ng(t) = War(neo)(t) = War(no)(t) € O(K) C O(€). So, ne(O(€)) C
O(€). Obviously, 7 mod p = ngo. |

Remark. — The above lifts 7¢ commute with o if and only if n com-
mutes with o, i.e. o(n(t)) = n(t?). In particular, if n(t) = ta?™ with
a € O(K) then o(n(t)) = trar™ = n(t?) (use that o(a) = a? mod pO(K)).

A very special case of the above proposition appears as the following
property:
If £/K is Galois then the elements g of the group Gal(£/K) can
be naturally lifted to (commuting with o) automorphisms of O(E)
via setting g(t) = t. Therefore, O(Ksep) has a natural structure of
a G-module, the action of G commutes with o, O(Ksep)9 = O(K)
and O(Ksep)lg:id = W]\/[(Fp).

Everywhere below we shall use the following simplified notation.

Notation. — If M is a Z/p™-module and & is a separable extension
of K we set Mg := Moe)(= M @7/, O(E)). Similarly, we agree that
Ny, =M ®Z/pM WM(]C)

1.2. Categories of p-groups and Lie Z/p™-algebras, [11, 12]

If L is a Lie Z/pM-algebra of nilpotent class < p, denote by G(L) the
p-group obtained from L via the Campbell-Hausdorff composition law o
defined for 117 lo € L via &I/)(ll o 12) = 6)\(f)ll . é)zﬁlg Here

exp(z)=1+z+--+aP1/(p—1)!

is the truncated exponential from L to the quotient of the enveloping al-
gebra A of L modulo the p-th power of its augmentation ideal J. (This
construction of the Campbell-Hausdorff operation was introduced in [2,
Subsection 1.2].)

The correspondence L — G(L) induces equivalence of the categories of
finite Lie Z/p™-algebras and finite p-groups of exponent p™ of the same
nilpotent class 1 < sop < p. This equivalence can be extended to the similar
categories of profinite Lie algebras and groups.

1.3. Witt pairing and Hilbert symbol, [8, 9]

Let

ol@)x?  o"(a)X?
S ...)eW(k)[[X]],

E(a, X) =exp (aX +

TOME 0 (0), FASCICULE 0



6 Victor ABRASHKIN

where o € W(k), be the Shafarevich version of the Artin-Hasse expo-
nential. Set ZT(p) = {a € N | ged(a,p) = 1}. Then any element u €
K*mod K*P"" can be uniquely written as
u = tg° H E(aa,tg)l/“modlC*pM,
a€Z* (p)

where ag = ap(u) € Zmodp™ and all a, = a,(u) € W (k) modp™.

Let 9 be a profinite free Wy (k)-module with the set of generators
{Do}U{Dgun | a € ZT(p),n € Z/Ngy}. Use the correspondences

(1.1) to — Do, E(a, )Y — Z 0" (a)Dan,

n modNg
to identify K*/K**" with a closed Z/pM-submodule in 9. Under this
identification we have IC*/IC*I’M ®z,/pm W (k) = 9.

Define the continuous action of the group (o) = Gal(k/F,) on M as
an extension of the natural action on Wy, (k) by setting 0Dy = Dy and
0Dgan = Dy ny1. Then K* /K" = gnCal(k/Fy)

The Witt pairing

0(K) /(o —id)O(K) x K* /K" — Z/pM,
is given explicitly by the symbol [f,g) = Tr (Res(f diogColg)). Here Tr :
W (k) — Z/p™ is induced by the trace of the field extension k/F,,
f € O(K) and Colg is t%\lle image of g € IC*/IC*”M under the group homo-
morphism Col : £*/K**" — O3,(K) uniquely defined on the above free
generators of IC*/IC*I’M via the conditions ¢y — ¢ and E(«,t§) — E(a,t%).
The Witt pairing is non-degenerate and determines the identification

K /K" = Homeon (O(K) /(0 — id)O(K), Z/p™).

It also coincides with the Hilbert symbol (in the case of local fields of
characteristic p) and allows us to specify explicitly the reciprocity map
Kk K*/ S SN gg’;, of class field theory. Namely, in the above notation

we have k(g)f = f + [f.9).
1.4. Lie algebra £ and identification 7y,
Let £ be a free profinite Lie Z/pM-algebra with the module of (frec)

generators K*/ K*P"" . Then the W (k)-module £, has the set of free gen-
erators

(1.2) {Do} U{Dun | @ € Z" (p),n € Z/No}.

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 7
It C’p(f,) is the closure of the ideal of commutators of order > p, then
L = L/Cp(L) is the maximal quotient of £ of nilpotent class < p.

Remark. — L is a free object in the category of profinite Lie Wy, (k)-
algebras of nilpotent class < p with the set of free generators (1.2).

We shall use the same notation Dy and D, for the images of the elements
of (1.2) in £. Choose o € Wi (k) such that Trag = 1.

Consider e = agDgy + Za€Z+(p) t7*Dyo € G(Lx). If we set Dy, :=
(0" ag)Do then e can be written as >, cz0(,) ¢ “Dao, Where 7°(p) =
Z*(p) U {0}.

Fix f € G(Lk,.,) such that o f = eo f. Then for 7 € G, the correspon-
dence

r i (—f) o rf € G(Lx,,lomia = G(L),
induces the identification of profinite groups nas : G ~ G(L).

Note that f € Lx_, and G, strictly acts on the G-orbit of f.

The above result is a covariant version of the nilpotent Artin—Schreier
theory developed in [3], cf. also Subsection 1.1 in [7] for the relation between
the covariant and contravariant versions of this theory and for appropriate
non-formal comments.

We shall use below a fixed choice of f and use the notation for e and f
without further references.

1.5. Relation to class field theory

The above identification 77y, taken modulo C5(G<),) gives an isomorphism
of profinite p-groups
e G2 s L9 = L£/Cy(L) = MO/ = o e
PROPOSITION 1.2. — n@ is induced by the inverse to the reciprocity

map of local class field theory k.

Proof. — Indeed, let {f;}1<i<n, be a Z/pM-basis of Wy (k) and let
{7i}1<i<n, be its dual basis with respect to the bilinear form induced
by the trace of the field extension W (k)[1/p]/Qp.

If a € ZF(p) and E(B;,18)Y/* = Dy, then Diy = > 6™(8i)Dan, and,
therefore, Dyo = ZZ i Diq. This implies that

e= Z t~ ;Do + a9 Do mod CQ(,CK),

i,a

f =" fiaDia + foDomod Ca(Lx.,.,),

i,a

TOME 0 (0), FASCICULE 0



8 Victor ABRASHKIN

where all fi,, fo € O(K<p), 0fia — fia = 7t~ and o fo — fo = ap. From
the definition of 7, it follows formally that for 7, = (n9%)~!'D;, and
70 = (137) "' Do, Tiafirar = firay + 0(ii1)0(aar), 70 fiyay = firar» Tiafo = fo
and 79 fo = fo + 1. (Here ¢ is the Kronecker symbol.)

Now the explicit formula for the Hilbert symbol from Subsection 1.3
shows that k(E(f;,t2)*/*) and k(to) act by the same formulae as 7;, and,
resp., 79- O

1.6. Construction of lifts of analytic automorphisms

Let 19 € Aut/C. Then there is a lift 1<, ¢ € AutK<), of ng. (Use that the
subgroup QT’M C,(G) of G is characteristic.) For any another such lift 77’<p70,
we have 17’<p’017211,)0 € Gep.

The covariant version of the Witt—Artin—Schreier theory [3], Section 1
(cf. also [7, Subsection 1.1] and [1, Section 1]), gives explicit description
of the automorphisms 1<, in terms of the identification 7,;. Consider
a special case of this construction when 7 admits a lift n € Aut O(K)
which commutes with o, and therefore we have the appropriate lifts <, €
Aut O(K<,), cf. Subsection 1.1. Then in terms of our fixed elements e and
[, we have no,(f) = co(A®idok_,))f, where c € L and A € AutL can
be found from the relation

(idz ® n)e = oc o (A®idpky)e o (—c),

cf. [3, Subsection 1.5], or [1, Proposition 1.1], and Subsection 3.2 below.
In other words, if (A ® idw,, ))(Dao) = Dao then

Z n(t)"*Dao = oc 0 Z t="Dyo | o (—¢).

a€Z9(p) a€Z0(p)

Note that proceeding as in [3, Subsection 1.5.4], cf. also [1, Subsec-
tion 1.2], we can verify (this fact will be used systematically below) that
with respect to the identification n,;, the automorphism A coincides with
the conjugation Adn<, : 7 — 772]1) TN<p (here 7 € Gop).

1.7. Ramification filtration in £

For v > 0, denote by g(;;} the ramification subgroup of G, with the
upper index v. Let £(*) be the ideal of £ such that nM(gg}g) = G(LW).
The ideals £(*) have the following explicit description.

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 9

First, for any a € Z%p) and n € Z, set Dy := Dynmod Ny- In other
words, we allow the second index in all D,, to take integral values and
assume that Dgy, = Dgn, iff n1 = nomod Ny. For s > 1, agree to use

the notation (a,n)s, where @ = (ay,...,as) has coordinates in Z°(p) and
n = (ny,...,ns) € Z°. Then we can attach to (a,n)s the commutator
[.. . [Daynys Dasnsly - - - s Daon.] and set y(a,n)s = a1p™ + - -+ + azp™. For

any v = 0, let f,(y),_N be the element from Lj given by

(1.3) F) n= Z p" a1n(R)]. .. [Dayny> Dagna)s - - - Daun.]

'Y(évﬁ)s:'Y
where 1(72) equals (si!(s2 — s1)!...(s —s))"Lif0 < ny =+ =ng, >
Ng41 = *++ = Ng, > -+ > Ng, = -+ =ng = —N, and equals to zero

otherwise. Then the main result of [4] (translated into the covariant setting,
cf. [5, Subsections 1.1.2 and 1.2.4]) states that:

There is N(v) € N such that if we fix any N > N(v), then L) is
the minimal ideal of £ such that for all v > v, ]:S,—N S L,(CU).

2. Filtration {£(s)}s>1

In this section we define a decreasing central filtration {£(s)}s>1 in the
Z/p™M-Lie algebra L from Subsection 1.4. Its definition depends on a choice
of a special element S € m(K) := tWy (k)[t] € O(K). This element S
(together with the appropriate elements Sy and S’ from its definition) will
be specified in Section 4, where we apply our results to the mixed charac-
teristic case.

2.1. Elements Sy, S’, S € m(K)

Let [p] be the isogeny of multiplication by p in the formal group
Spf Z,[X] over Z, with the logarithm X + X?/p+---+ XP" /p" +....

Choose Sy € m(K) and set S" = [p|M~1(Sp) and S = [p|*(Sp). Then
S, 8" € m(K), they both depend only on the residue Sy modp and S = ¢5".
In particular, if e* € N is such that Smodp generates the ideal (t§ ) in
K[[to] then e* = 0 mod p™.

TOME 0 (0), FASCICULE 0



10 Victor ABRASHKIN

PROPOSITION 2.1.

(a) dS =0 in Q4 y;

(b) there is " € m(K), such that S = S"(p+ 5");

(c) there are ng,m € War(k)[t]* and na € War(k)[t] such that

S =t ng + pt° /Py + p*na.

Proof.

(a) The congruence [p|X = XPmodpZ,[X] implies that d([p]X) €
pZ,[X]. Therefore, dS =0 in Q}D(IC)‘

(b) Note that [p](X) = pX mod X2. Therefore, there are w; € Z, such
that S = [p]S" = pS’" + 3,5, wiS" and we can take S” = 3, wi415".

(¢) The tg-adic valuation of S’ mod p equals e*/p. Then our property is
implied by the following equivalence in Z, [ X]

[p](X) = pX + X mod (pX? ~PH1 p?X). 0

Remark. — We shall use below property (a) in the following form:

If s € N and S° = 2121 Yist!, where all v € Wy(k), then
l7ls =0.

2.2. Morphism ¢

Let U = (1 + tok[to])* be the Z,-module of principal units in K.
Then L{/L{pM is a closed Z/p™-submodule in IC*/IC*”M. Note that m(K) =
Wir(mi) N O(K), where mg is the maximal ideal in the valuation ring of
K. Consider a (unique) continuous homomorphism

t:U — m(K)

such that for any a € Wy (k) and a € ZT (p), ¢ : E(a, t3) +— at® (here F is
the Shafarevich function, cf. Subsection 1.3).

Then ¢ induces an identification of U /Z/IPM with the closed W (k)-
submodule

Im. = Z gt € Wi (k)

a€Zt (p)

in O(K). This submodule is topologically generated over Wy, (k) by all ¢°
with a € ZT (p).

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 11
2.3. Definition of {£(s)}s>1

Set (IC* /K™ YV = /K™ For s > 1, let (K* /K™ )(5+D) = (Im ) S*
with respect to the identification Z/{/U”M = Im ¢ from Subsection 2.2. Note,
that S = 0.5’ implies that for any s € N, (Im¢)S* C Im .

DEFINITION. — {£(s)}s>1 is the minimal central filtration of ideals of
the Lie algebra £ such that for all s > 1, £(s) D (K* /K" ).

The ideals £(s) can be defined by induction on s as follows. Let
L(1) = L; then for s > 1, the ideal L(s + 1) is generated by the
elements of (IC*/IC*pM)(SH) and [L(s),L]. Note also that for any s,
(/K™Y 0 L(s) = (K* /K™Y, (Use that Z/pM-module L(s) is iso-
morphic to (K*/K*?")(®) @ (L(s) N Co(L)).

In addition, for any s > 1, the quotients (IC*/IC*pM)(S)/(IC*/IC*pM)(S+1)
are free Z/p™-modules. This easily implies that all £(s)/L(s+ 1) are also
free Z/pM-modules.

2.4. Characterization of {£(s)}:>1 in terms of e € L

Recall that e = ZaEZO(p) t=%D,o, cf. Subsection 1.4.

PROPOSITION 2.2. — The filtration {L£(s)}s>1 is the minimal central
filtration in £ such that £(1) = £ and for all s > 1,

Sée € L‘m(;c) + L(s+ 1)k.
Proof. — We need the following two lemmas.

LEMMA 2.3. — For all s > 1 and a, € Wy (k) where a € Z*(p), we
have

[ Blawts) e oo™y
a€Zt (p)
o I Blawty)t= e (e /™),
a€Z* (p)
Proof of Lemma 2.3. — We must prove that
a S 1 a S
Z gt € °m(K) < Z Eaat € S°m(K).
a€Z* (p) a€Z* (p)

Let S* = Zl>1ﬁylstl with ;5 € Wy(k), then lys = 0, cf. Remark in
Subsection 2.1.

TOME 0 (0), FASCICULE 0



12 Victor ABRASHKIN

Suppose
Z .t € S*m(K).

a€Zt (p)

Then >, aqt® = (3, Bet®) (X, vist!), where >, Bpt® € m(K) and o, =
> b1 Bois. This implies

éaa: Z éﬂb’yls: Z %61)7!&

a=b+l1 a=b+l1

because if a = b+ 1 and a € Z*(p) then b € Z*(p) and

1 1 —lys

s T s = T T = 0.

So,
Z l%ta = Z lﬂbtb (Z %stl>
a€Zt (p) a bEZ* (p) b l

and

Z éaat“ € S'm(K).

Proceeding in the opposite direction we obtain the inverse statement.
The lemma is proved. g

LEMMA 2.4. — Ifs > 1 and all a, € Wy, (k) then
[ Blea t§) € (7 /KP")D & 37 auDao € (K7/K7")7
a€Z* (p) a€Zt (p)
Proof of Lemma 2.4. — Suppose
[I Eeatg)Vee /e,
a€Z*(p)
Choose a Wy (F,)-basis {8;} of War(k), and let {v;} be its dual with
respect to the trace form. Then for any i,
[T Bty e (/™).
a€Z*(p)
In other words (use (1.1) from Subsection 1.3),

= Z ™ (Bi)o™(q)Dan € (IC*//C*”M)(S) C L(s),

a€Z™ (p)
neZ/NoZ

Z’}/ici = Z agDgo € ,C(S)k.

a€Zt (p)

and
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Suppose now that » ;. (p) @aDao € L(8)g. Then
> awDa € (KK,
a€Z*(p)
and, therefore,

3" 0™(00) Dan € (K* /K77,

a€Zt (p)
n€Z/NoZ

This means, that
[I Eeatg)Vee /e,
a€Z* (p)
The lemma is proved. O

Now we can finish the proof of our proposition. If, as earlier, S° =
> is1 mst! with 4 € Wiy (k), then (Im¢)S* is the Wiy (k)-submodule in
m(K) generated by the elements 115 = 37, sttt ay € ZF(p). The
above lemmas imply then that {£(s)}s>1 is the minimal central filtration
in £ such that £(1) = £ and for all ay € Z*(p),s > 1,

> Day 410 € L(s+ 1 -
1>1
On the other hand,

Se= > st " Deg= > D VsDayiro | T

acZ®(p) a1 €ZF (p) =1
1>1

modulo Ly,(x). Therefore,
Sfe € £m(l€) +L(s+ 1)k

& Z’YlsDa1+l,O € L(s+1), foralla €Z(p).
1

The proposition is proved. O
DEFINITION. — N =37 | S7°L(8)m(x)-

Note that N is a Lie Wjs(F,)-subalgebra in Lx. With this notation
Proposition 2.2 implies the following characterization of the filtration

{L£(8)}s21-

COROLLARY 2.5. — {L(s)}s>1 Is the minimal central filtration in £ such
that £L(1) = L and e € N.
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Proof. — It will be sufficient to verify that
eeN & Vs>1, S%ec Lk +L(s+1)k.

The “if” part is obvious. The “only if” part can be proved by induction on
s via the following property:

If I'(s) € L(s)x and Sl'(s) € Ly + L(s + 1)k then I'(s) €
STL(S)mc) + L(s + 1) (use that L(s)/L(s + 1) is free Z/p™ -
module). O

2.5. Element ef € G(Lk)

Recall that Smodp generates the ideal (t§) in k[to]. Therefore, the

projections of the elements of the set
{S’_mtb |1<b< e, ged(b,p)=1,me€ N} U{ao}

form a basis of O(K)/(o — id)O(K) over Wy, (k).

PROPOSITION 2.6. — There are V(o) € L, x € SN and Viy ) € Lg,
where m > 1, 1 < b < e*, ged(b, p) = 1, such that

(a) el := > ST Vipm) + V(o) € N

(b) ef = (—ox)oeouw.

Proof. — Note that S € om(K) implies that the sets {t~* | a € ZT(p)}
and {S™™t* | m € N, ged(b,p) = 1,1 < b < e*} generate the same Wy (k)-
submodules in O(K)/m(K). This implies the existence of V(EJO)) € L and
V((bozn) € L}, such that
(2.1) e= eg mod Ly, (k)

where e := > bm) S‘mth(gfzn) + aOV((OO)).
Fori > 1, let N = D65 ST°L(8)m(x)- Then

o N = S_iﬁ(i)m(}g) + NOFD),
. [/\/(i),N] c NG+

In particular, relation (2.1) implies that e = eg + oxg — x9, where zy €
L), and we obtain

(2.2) (—ox0) 0 € 0 g = e mod SN

(use that 29,020 € L) C SNW). Now we need the following lemma.
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LEMMA 2.7. — Suppose M is a Zy-module and ig € N. Then for any
le S*iozmm(,c), there are l(g) € M, | € S’iOSJTm(,C) and l(y, ) € My, where
1 <m <, ged(p,b) =1 and 1 < b < e*, such that

l= Z Simtbl(bﬂn) + Ozol(o) +ol—1.

Proof of Lemma 2.7. — It will be sufficient to consider the case 9 = Z,,.
In other words, we must prove the following statement:
For any s € S~"m(K), there are (o) € Wy (Fp), § € S~m(K)
and Bp,m) € War(k), where 1 < m < g, ged(b,p) = 1 and 1 <
b < e*, such that

S = Zﬁ(b,m)simtb + Oéoﬁ(o) + oS — S.

We can assume that s = t%/S% where 1 < ag < e*, ig € N and our
lemma is proved for all elements s from pS~om(K) + t%S~%om(K).

If ged (ap,p) = 1 there is nothing to prove. Otherwise, ap = pa; and
s =5 +o(s) — s with s/ = t¥1/S" = tu(p 4 §")/S%. It remains to
note that s’ € pS~om(K) +t% S~ m(K), because S” mod p € (tSO), where
eV :=e*(1 —1/p), and a; +€® = ag/p + €° > ag (use that ag < e*). O

Continue the proof of Proposition 2.6. Clearly, it is implied by the fol-
lowing lemma.

LEMMA 2.8. — For all i > 0, there are z; € SN, V, (bm € Ly and
V(E) € L such that:

(a1) 341 = x; mod SN CFD);

41 7

(a2) VEH) =V mod £ +2);

(ag) V, Hl) = V((Z mod L(i + 2)

(b) i fel- =Y pm S~ mth(() )—i—aoV(i) then

(—om;)oeox; = eJr mod SN (1+2),

Proof of Lemma 2.8. — Use the elements V((O) ) V((OO))7 ey and xo from

the beginning of the proof of Proposition 2.6. Then part (b) holds for i = 0

by (2.2).
Let 99 > 1 and assume that our Lemma is proved for all ¢ < 7y. Let
l € ST L(ip + 1)m(x) be such that

e;ro_l — (=0xiy_1) 0 e 0 x4y = [ mod SN2

Apply Lemma 2.7 to M = L(io + 1) and | € S~ L(iy + 1)m(x). This
gives us the appropriate elements I ,,) € L(io + )&, Loy € L(io + 1)
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and [ € S~ L(iy + 1)m(x)- Note that the elements I(;, ) are defined only
for 1 < m < ip. Extend their definition by setting ¢ ,,,) = 0 if m > .

Then the case i = iy of Lemma 2.8 holds with V(gf‘;i) = Véj%” + Lb,m)s

V(Eff) = V(E)i)ofl) + 1oy and z;, = @4o—1 + I. (We use here that SA(o+D) =
ST L(ig 4+ V) + SN 0F2))

Lemma 2.8 and Proposition 2.6 are completely proved. O

Proposition 2.6(b) implies that the elements 0"V(3 .y, n € Z/No, to-
gether with V(o) form a system of free topological generators of Lx. Sup-
pose {Bi}1<i<n, and {7i}1<i<n, are the Z/pM-bases of Wy, (k) from the
proof of Proposition 1.2. Proceeding similarly to that proof introduce the
elements

‘/(bﬂn),i = Z Jn(ﬂi)o—n(‘/(b,m)) .
n€Z/Ny

Then all V3, .y can be recovered via the relation Vi, p,y = >, ¥iV(p,m),i- This
implies that the elements V(3 ,,) ; together with V() form a system of free
topological generators of L. (Recall that £ is a free object in the category
of Lie Z/p™-algebras of nilpotent class < p.) Therefore, we can introduce
the weight function wt on £ by setting for all b,m, i, wt(V{, m),;) = m and
wt(V(0)) = 1. Note that by Proposition 2.6(b) we have that ¢! € A if and
only if e € N. Now Proposition 2.2 implies the following corollary.

COROLLARY 2.9. — For any s > 1, L(s) ={l € L | wt(l) > s}.

3. The groups G, and G,
3.1. Automorphism h

Let S € O(K) be the element introduced in Subsection 2.1. Let hg €
Aut(K) be such that hglr = id and hg(tg) = toE(1, Smodp). Then hg
admits a lift to h € Aut O(K) such that h|w,, &) = id and h(t) = tE(1,5).
Recall that O(K) = Wy (k)((t)). If n € N then denote by h™(t) the n-th
superposition of the formal power series h(t).

PROPOSITION 3.1. — For any n € N, h"(t) = tE(n, S) mod SPm(K)

Proof. — If n = 1 there is nothing to prove. Suppose proposition is
proved for some n € N. Then

R"TL(t) = A (h(t)) = tE(1, S)E(n, S(h(t))) mod m(K)S(h(t))P.
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Recall, cf. Subsection 2.2, that S = 2121 yut!, where 451 € Wi (k) and
Y1l = 0. Let [ = I'p® with ged(I’,p) = 1. Then v;; € pM =Wy, (k).
With the above notation we have in Wy, (k)[t],

E(1,8)! = exp(p®S 4 - -- —|—]3k5””(171)l,l?(17 5P ) = 1mod (p®, S7).
Therefore (use that y;;p* = 0),
S(h(t) = SEE(1,9) = Y mt'E(1,8)' = qut' = Smod 57,
1 1

and h"Ti(t) = tE(1,S)E(n,S) = tE(n + 1,S)modm(K)S? (use that
S(h(t))? = 0mod SP). O

3.2. Specification of lifts h.,

Note that h(t) = ta?" ™" where o = E(1,50)P, and therefore, h com-
mutes with o, cf. Remark in Subsection 1.1. Now suppose that h<,o €
Aut Ko, is a lift of hg. Then Proposition 1.1 provides us with a unique
hep € Aut O(K<,) such that heplox) = h and hepmodp = hopo. There-
fore, we can work with arbitrary lifts h<, o of hg by working with the
appropriate lifts h., of h. Note that all such lifts h<, commute with o.

A lift hop, of h can be specified by the formalism of nilpotent Artin—
Schreier theory as follows.

e Define similarly to [1] the continuous Wy, (k)-linear operators R, S :
L — L as follows.
e Suppose a € Ly.
e For n >0, set R(t"a) = 0 and S(t"a) = = 3_,5, 0" (t"a).
e Forn =0, set R(a) =ao(idc@Tr) (), S(a) =3 p<jcicn, dlagoia,
where Tr : Wi (k) — Wi (k) is induced by the trace map in k/F,
and ag € W (k) with Trag = 1 was fixed in Subsection 1.4.
e For n = —nyp™, ged(ng,p) = 1, set R(t"a) = t ™™o ™« and
St"a) = 1cicm o i (t"a).
Similarly to [1] we have the following lemma. (We use also the special case
M = Z,, of Lemma 2.7.)

LEMMA 3.2. — For any b € L,

(a) b="R(b) + (0 —idg,)S(b);

(b) if b = by + oc — ¢, where by € Zaez+(p) t7%Ly + ol and ¢ € L
then R(b) = by and ¢ — S(b) € L;

(c) for anyn >0, R and S map S™" Ly, (k) to itself.
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According to Subsection 1.6, for the lift A, € Aut O(K.,) of h (which
is attached to the lift h<, o of hg), we have that

hep(f) =co(A®idok.,))f -

Here ¢ € Lic and A = Adh«p, € Aut L (cf. Subsection 1.6 for the defini-
tion of Adh.p). Similarly to [1] it can be proved that the correspondence
hep = (c,A) is a bijection between the set of all lifts h., of h and all
(¢, A) € L x Aut £ such that

(3.1) (idz ® h)(e) o c = (0¢) o (A@ido))(e) -
This allows us to specify a choice of h., step by step proceeding from
hepmod Cys(Lx_,) to hepmod Csy1(Li_,) where 1 < s < p, as follows.
Suppose ¢ and A are already chosen modulo s-th commutators, i.e. we
chose (cs, As) € Lxc x Aut L satisfying the relation (3.1) modulo Cy(Lx).
Then set cs11 = ¢s + X and Agy; = As + A, where X € Ci(Lx) and
A € Hom(L,Cys(L)). Then (3.1) implies that (here A; =A@ Wi (k))

(32) oX—X+ > t"Ap(Dao)
a€Z0(p)
= (idg ® h)eocs —ocs o (As ®idoky)e mod Cs 11 (L)

Now we can specify cs11 and Ag4q by setting X = S(Bs) and
aemopt “Ar(Dao) = R(Bs), where B, is the right-hand side of the
above recurrent relation. Note that the knowledge of all Ak (Dgg) recov-
ers uniquely the values of A on generators of £ and gives well-defined
Asy1 € Aut L. Clearly, (csy1,Asy1) satisfies the relation (3.1) modulo
Cs+1(Lx). Finally, we obtain the solution (%, A%) := (c,, 4,) of (3.1) and
can use it to specify uniquely the lift hgp of h.

3.3. The group g]

Consider the group of all continuous automorphisms of K., such that
their restriction to IC belongs to the closed subgroup in Aut KC generated by
ho. These automorphisms admit unique lifts to automorphisms of O(K,)
such that their restriction to O(KC) belongs to the subgroup (k) of Aut O(K)
generated by h, cf. the beginning of Subsection 3.2. Denote the group of
these lifts by §h.

Use the identification ns from Subsection 1.4 to obtain a natural short
exact sequence of profinite p-groups

(3.3) 1— G(L) — Gn — (h) — 1
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For any s > 2, the s-th commutator subgroup Cs(Gp) is a normal sub-
group in G(L). Therefore, £;,(s) := Cs(Gy) is a Lie subalgebra of £. Set
Ly (1) = L. Clearly, for any s1,s2 > 1, [Lr(s1),Lr(s2)] C Lr(s1 + s2), in
other words, the filtration {L£,(s)}s>1 is central.

THEOREM 3.3. — For all s € N, L,(s) = L(s).

Proof. — Use the notation from Subsection 2.5. Obviously, we have:
o L(s+1)=(K*/K*")+D 4 £(s+1) N C(L), where the Wy (k)-
module (IC*/IC*”M)(S“) is generated by all V{3 ,y with m > s + 1
(for the definition of V) cf. Proposition 2.6) and L(s + 1) N
Ca(L) =3, 1 aymsr1 [£(51), L(s2)];
o Lp(s+1) is the ideal in £ generated by [Lp(s), £] and all elements
of the form (Adh«p)l o (—1), where | € Lj(s) and h), is a lift of h.

Consider the elements V(o) and V), introduced in the end of Sec-
tion 2). Recall that m € N, 1 < b < €* and ged(b, p) = 1.

LEMMA 3.4. — There is a lift hl,, such that if (AdhL,)Vio) = Vo) and
for all b,m, i, (AdhL ) Vip.m),i = Vib,m),: then

(a) Vioy = Vioymod Co(L);

(b) Vibm),i = Viem)i + 0Vip,m+1),s mod (L(m 4 2) + L(m + 1) N Co(L)).

We shall prove this Lemma below.

Note the following immediate applications of this lemma:

(a) if I € L(s) then (AdhL,)lo (=) € L(s+ 1);

(b) if I € (K*/K**"")(+D) then there is an ' € (K*/K*")() such that
(AdhL )l o (—1") = Imod L(s 4+ 1) N Ca(L).

Now we can finish the proof of our theorem.

Clearly, £5,(1) = L£(1).

Suppose 5o > 1 and for 1 < s < sg, we have Li(s) = L(s).

Then [L1(s0), L] = [£(s0), L(1)] C L(so + 1) and applying (a) we obtain

that Ln(so +1) C L(so +1).
In the opposite direction, note that by inductive assumption,

Liso+1)NCo(L) = > [Ln(s1),La(s2)] C La(s0+1)

s1+s2=s0+1

and then from (b) we obtain that (IC*/IC*pM)(SOH) C Lp(sp + 1). So,
L(so+1) C Ly(so 4+ 1). The theorem is completely proved. O
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Proof of Lemma 3.4. — Let

(Adh<p ® ldo(jg) Wﬂzv(b m),i + O‘(O)V(O)
S

i,b,m

Similarly to Subsection 3.2 there is ¢! € Li such that
(3.4) (idz @ h)el ot = (oct) o',

and the choice of h1<p can be specified by an analog of the recurrent pro-
cedure from the end of Subsection 3.2.
Namely, set ¢ = 0 and A] =idg. Then for 1 < s < p, (ct,,AL,;) can
be defined as follows:
e B, = (ids ®@ h)ef ocl — (oc!) o (Al @idx)ef
e X, =8(By), (As ®idx)el = R(By);
i C;Jrl = C; + X, A;+1 = Ai + A,
This gives the system of compatible on 1 < s < p solutions (cl, Al) €
L x Aut £ of (3.4) modulo Cy(Lx) and (¢, A') := (c), A}) defines hL,.
Let
N =3 "87HL(1) N Co(L))mic) C NP

=2

Note that [N, N] C N®)_ Consider the following properties.
(1) (idz ®@ h)(ef) = ef +ef + €] mod S2N, where e, e; € SN and

_ bt*
€ = Z Bz‘/(b m+1),i> 61 = Z bt? Bzvv(b 1),4
i,b,m b,i
(use that h(S) = S(h(t)) = SmodSP, cf. the proof of Proposi-
tion 3.1).
(2) &' = ef mod SN and ¢! € SN (use that for all s, B, € SN and R
and & map SN to itself).
(3) (=oc)o(ids @ h)(et) oc! = (¢! —oct) + el + el mod S2N + SN
(use that ¢ € SN and (id; ® h)(ef) € N)
(4) Apply R to the congruence from c), use that S?N 4+ SN ®?) is
mapped by R to itself and R(c! — oct) = R(ef) =0

tb ~
eh = Z Wﬁz (Vv(bvm)ﬂ' + b‘/v(b7m+1),i) + Olo‘/(o) mod 52N + SN(2) .

i,b,m

It remains to note that the last congruence is equivalent to the statement
of our lemma. O
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3.4. The group G,

Let G = g~h/g~}€M Op(gh)'

PROPOSITION 3.5. — Exact sequence (3.3) induces the following exact
sequence of p-groups

(3.5) 1 — G(L£)/G(L(p)) — Gr —> (hymod (h?") — 1

Proof. — Set
M=N+Lpk= Y SLS)mr) + LDk
1<s<p
Moy = Z STL(S)m(k,) + LDk,

1<s<p

where m(K<p) = Wiy (me,) NO(K<,) and m.,, is the maximal ideal of the
valuation ring of K.

Then M has the induced structure of Lie W), (k)-algebra (use the Lie
bracket from Li) and SP~'M is an ideal in M. Similarly, M., is a
Lie Wy (k)-algebra (containing M as its subalgebra) and SP~'M_,, is an
ideal in M,. Note that e € M, f € M, SP"*M, N M = SP7IM,
and we have a natural embedding of M := M/SP~*M into M., =
Mp/SP~ M, For i > 0, we have also (idz ® b — idap)'M C S*M.

Consider the orbit of f := fmod SP=1 M, with respect to the natural
action of G, C Aut O(K<,) on M,. Prove that the stabilizer H of f equals
G ColGn)-

If | € G(L) then 1, () € G, sends f to f ol. This means that for
l € LNH we have

1€ SPIMopyNL=SP""MNL=L(p)xNL=L>{P) =ChGh).
Therefore, H N G(L) = C,(Gr) C H and we obtain the embedding
K G(L)/G(L(p)) — Gn/H.

Now consider the lift hgp from the end of Subsection 3.2.

Note that EJZM mod Cp(éh) is generated by h(ippM. Indeed, any finite p-
group of nilpotent class < p is P-regular, cf. [10] Subsection 12.3. In partic-
ular, for any g € G(L£), (hZ, og)" = h(ippM og'mod C,(Gy) , where ¢’ is the
product of pM-th powers of elements from G(L£), but G(£) has period p™.

As earlier, h? , f = ®o(A°®idk) f. Note that ¢ € SM (proceed similarly
to the proof of Lemma 3.4(b)).
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Then
M
he, (f)
= (i[d@h)P" 1 (CO 0 (A h o0 (A ® h*l)prlCO>
o (A" @id)f.

Clearly, (A° —id.)PL C L£(p) and, therefore, (A" @id)f = f.
Similarly, B = A° ® h~! is an automorphism of the Lie algebra M, and
for all s > 0, (B — idp)(S*M) C STIM.

LEMMA 3.6. — For any m € SM, mo B(m)o---oBP" ~lm € SPM.

Proof. — Consider the Lie algebra 9 = SM/SPM with the filtration
{9 (i) }i>1 induced by the filtration {S*M};>1. This filtration is central,
i.e. for any i,5 = 1, [DM(4), M(5)] € M(i + 7). In particular, the nilpotent
class of M is < p.

The operator B induces the operator on 99t which we denote also by B.
Clearly, B = exp B where B is a differentiation on 9t such that for all 7 > 1,
BOn(i)) C M(i + 1).

Let 9 be a semi-direct product of 9t and the trivial Lie algebra (Z/p™)w
via B. This means that M = M & (Z)pM)w as Z/pM-module, I and
(Z/p™)w are Lie subalgebras of 9 and for any m € M, [m,w] = B(m).
Clearly, Cy (E)Aﬁ) = [ﬁ, ﬁ] C M(2). This implies that M has nilpotent class
< p and we can consider the p-group G (ﬁ) This group has nilpotent class
< p and period pM (because for any m € M, its pM-th power in G(ﬁ)
equals pMm = 0).

Note that the conjugation by w in G(ﬁ) is given by the automorphism
exp B = B. Indeed, if m € 90t then

B(m) = (expB)m = Z B™"(m)/n! = (—w)omow
o<n<p
(use very well-known formula in a free associative algebra Q[X, Y],
exp(—Y)exp(X)exp(Y) =exp(X + ...+ (ad"Y)X/n! +...),

where adY : X — [X|Y]).

In particular, for any element m = mmod N (p) € M, we have wy om =
B(m) 0wy, where wy = —w. Therefore, 0 = (mow;)?" =moB(m)o---o
B ~1(m) o wsz, and it remains to note that wa =0. O

Applying the above Lemma we obtain that
Po(A@h )P o0 (A @A IO e N(p) € 5P M
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Opl\l —
and, therefore, h, (f) = 0.
Thus, we proved that &,’;M C,,(g]) CH.
Suppose g = h,l € H with some | € G(L). Then g(f) = bo f where
b e SP~IM_,. Note that o(b) € SP"* M_,,. Then
g(e)obo f = g(e)og(f) = glof) =cboof =aboco f

implies that g(e) = emod SP~* M. Thus (id ® h)™(e) = e mod SP~I M.
Now use that e = ef mod Ly, (x) + C2(L)x, cf. the beginning of the proof
of Proposition 2.6.
Clearly, Lo,y + L(p)k D SP~1 M and, therefore, for the element

/b
T
el, =Y Y G PiViom) i
Wb 1<m<p
we obtain (id; ® h)m(elp) = eT<p mod Ly, k) + Ca2(Lx). But
m t'E(bm, S
hm(el,) = Z Z %ﬂi‘f(b,m),i mod Lo, (x) + L(p)k
b 1<m<p

Now following the coefficients for V(3 ;,_2) ; we obtain m = 0 mod p™ . There-
fore, | € H N G(L) = Cp(G) and H € G C,(Gr).

Finally, we have G,/H = Gn, Hmod C,(Gy) = (h’iﬁ} and, therefore,
Coker & = (h) mod (h?""). 0

COROLLARY 3.7. — If Ly, is a Lie Z/p™ algebra such that G, = G(Ly,)
then (3.5) induces the following short exact sequence of Lie Z/pM -algebras

0 — L/L(p) — Ly — (Z/pM)h — 0

Remark. — 1In [1] we studied the structure of the above Lie algebra
Ly, in the case M = 1. The case of arbitrary M will be considered in a
forthcoming paper.

3.5. Ramification estimates

Use the identification from Subsection 1.3, ny : Gal(K<,/K) = G ~
G(L) and set for all for s € N, K[s, M] := ng()c(sﬂ)). Denote by v(s, M)
the maximal upper ramification number of the extension K[s, M]/K. In
other words,

v(s, M) = max{v | g(<”p) acts non-trivially on K[s, M]}.
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PROPOSITION 3.8. — For all s € N, v(s, M) = pM~1(e*s — 1) (for the
definition of e* cf, Subsection 2.1).

Proof. — Recall, cf. Subsection 1.7, that for any v > 0, the ramification
subgroups Q(<Up) are identified with the ideals £(*) of £, and for sufficiently
large N = N (v), the ideal E,(f) is generated by all a"]—'Sy_N, where v > v,
n € Z/Ny and the elements .7-',?7_]\, are given by (1.3).

Let e¥ = e*(1 — 1/p).

LEMMA 3.9. — Ifa € Z%(p), v € N and 0 < ¢ < M then the following
two conditions are equivalent:

(a) t*S™* € m(K)mod p® O(K);
(b) a>e*u+e(c—1).

Proof of Lemma 3.9. — Proposition 2.1(c) implies that

128U — ta—ue*no 14+ Z t—ieoni(u)pi
i>1

where 1y and all 7;(u) are invertible elements of Wy, (k)[[t] C O(K). There-
fore, 25~ € m(K) mod p°O(K) if and only if for all 1 < i < ¢, ta—ue —ic’ ¢
m(K), i.e. a —ue* — (¢ —1)e® > 0. The lemma is proved. |

COROLLARY 3.10. — D, € L(u); mod p°O(K) if and only if we have
that a > e*(u — 1) + (¢ — 1)’ + 1.

LEMMA 3.11. — Suppose N > 0.

(a) If vy > pM~1(e*s — 1) then ]:gﬁN € L(s+ 1)g;
(b) ify = pM~L(e*s — 1) then

‘FE/),—N =pM Doy 1 1 mod L(s + 1)y .

Proof of Lemma 3.11. — For any v > 0, .7-"37_1\, is a Z/p™-linear com-
bination of the monomials of the form

X(b;a1,...,ar;ma,...,my)

= pba1[~ .. [Dal,b7m17Da2,b7m2}7 “e. aDar,bfmT] 5

where 0 <b< M, 1<r <p,alla; € Z°(p),0 =my <mg < -+ <m,, and
a a,
pb(a1+ 24t m)zv-
pm2 pr

For 1 <i < r, let u; € Z be such that (note that p™|e*, pM~1|e" and if
M =1then M —b—1=0)

T+e*(ui—1)+e®(M—b—1)<a; <e*u; +e’(M—b—1).
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This means that all D, p_,, € L(u;)r mod p™=bL; .
Suppose X (b;aq,...,ar;ma,...,m,) & L(s+1)g. This implies that u; +
-+ +u, < s and, therefore, a; + -+ a, < e*s+re® (M —b—1) —r.
If v > pM~Y(e*s — 1) then a; + - -+ + a, > pM~0"1(e*s — 1) and
e*s+re® (M —b—1)—r>pM 07 1(e*s —1).
Set c=M —b—1,then 0 <c< M and
(p¢ —1)(e*s — 1) < r(lc—1).

If ¢ = 0 then r < 0, contradiction.
If ¢ > 1 then (use that r < p—1and s > 1)

(1+p—|—---—|—pc_1)(e*—1)<eoc—1.

But then e* = e%(1+1/(p—1)) > €+ 1 implies that 1 +p+---+p°~1 <ec.
This contradiction proves (a).
Suppose v = p™~!(e*s —1). Then the expression for F9 _, contains the

MlD

term p ers—1,M—1- Take (with above notation) any another monomial

X(b;ay,...,ar;ma,...,m,) from the expression of .7-"2’7 . Clearly, r > 2.
As earlier, the assumption that this monomial does not belong to £(s+ 1)
implies that
(p° = 1)(e*s —1) <r(c—1) +1.
If ¢ = 0 then r < 1, contradiction.
If ¢ > 1 then again use that » < p — 1 to obtain

l4+p+---+p~ 1)(68—1) ele—1+1/(p—1) <€

and note that the left-hand side of this inequality > ce® (use that e*s—1 >
e* —1 > €Y). The contradiction. The lemma is completely proved. O

It remains to note that Lemma 3.11 implies that
max{v | L) ¢ L(s+1)} =pMe*s—1).

Proposition 3.8 is completely proved. O

4. Applications to the mixed characteristic case

Let K be a finite field extension of Q, with the residue field k ~ [F,,~, and
the ramification index ey . Let mg be a uniformising element in K. Denote
by K an algebraic closure of K and set I' = Gal(K/K). Assume that K
contains a primitive p™-th root of unity Cas.
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4.1. The subgroup r

For n € N, choose 7, € K such that 72 = m,_;. Let K = Unen K (),
I, :=T/T?"C,(I') and T = Gal(K/K). Then T C T induces a continuous
group homomorphism 7 : [ — I'ep.

We have Gal(K(m)/K) = (10)2/?"" | where mo(mar) = marCar. Let j
I'c, — Gal(K(mp)/K) be a natural epimorphism.

PROPOSITION 4.1. — The following sequence

z/p™

T 5T, -5 ()P —1

is exact.

Proof. — For n > M, let ¢, € K be such that (2 = (,_;.
Consider K’ = {J,,5 5 K(7n, Cn). Then K'/K is Galois with the Galois

group FI?,/K = (o,7). Here for any n > M and some sy € Z, 0(, =
Yo gmn =, 7(Co) = Cny Tn = Tnp and o Lre = 7P 50) T
M
Therefore, F%, K (o?" 77"} and for the subgroup of second commu-
_ M pM « . .
tators we have Cy (FK,/K) C (P ) C F%//K. This implies that
p™ _ _ (M pM
FI'},/KCP(FK//K) <0 ) T >
M
~ T P ~ .
and for FK,/K(M) = I‘K,/K/F%l/KC’p(FK,/K), we obtain a natural exact

sequence

(o) — FI?//K(M) — {7y mod <TPM> _ <TO>Z/pM 1

Note that I';z, together with a lift & € T of o generate I'. The above short
exact sequence implies that Ker (F<p — (10)%/ pM) is generated by 6 and

the image of I';z,. So, this kernel coincides with the image of T in 'e,. O

4.2. Special choice of S and S,

Let R be Fontaine’s ring. We have a natural embedding k¥ C R and an
element tg = (m, mod p),>0 € R. Then we can identify the field k((to)) with
the field K from Sections 1-3. If Ry = Frac R then K is a closed subfield
of Ry and the theory of the field-of-norms functor identifies Ry with the
completion of the separable closure s, of K in Ry. Note that R is the
valuation ring of Ry and denote by mp the maximal ideal of R.

ANNALES DE L’INSTITUT FOURIER



GROUPS OF AUTOMORPHISMS OF LOCAL FIELDS 27

This allows us to identify G = Gal(KCsep/K) with [ C T C Aut Ry. This
identification is compatible with the appropriate ramification filtrations.

Namely, if K is the Herbrand function of the (arithmetically profinite)
field extension IN{/K then for any v > 0, G = ) n f, where v; =
Y k()

Let as earlier, G, = Q/QPMCP(Q). Then the embedding G = Fcr
induces a natural continuous morphism ¢ of the infinite group G, to the
finite group I'<,. Therefore, by Proposition 4.1 we obtain the following
exact sequence

z/p™

(4.1) Gep —= Ty 15 (1) — 1.

Let (py = 1+ Zi>1[/6’i]7r6 with all 5; € k. Consider the identification
of rings R/tgX ~ Og/p given by (ro,...,Tn,...) = 10. Ilf € = (¢n)n>0
is Fontaine’s element such that (s is our fixed p™-th root of unity then

we have in Wy,(R) the following congruence (as earlier, ¢t = (to,...,0) €
W (R))
(4.2) o Me=1+ Zﬁiti mod (t°%, p) .

i>1

Now we can specify the choice of the elements Sy, S € m(K), cf. Subsec-
tion 2.1, by setting E(1,S0) = 1+ >, Bit' and S = [p]™(S)). Note that
Smodp generates the ideal (§ ) in Ox = k[to], where e* = peg /(p — 1).
Now congruence (4.2) can be rewritten in the following form

o Me=E(1,S))mod (6= 1SP7L p).
Applying o we obtain
o M¥le = B(1, [p]So) mod (P71, p)
and then taking p™ ~!-th power
e = E(1,S)mod SP'Wy(R).

4.3. The lifts 1.,

Let vi be the extension of the normalized valuation on K to Ry. Consider
a continuous field embedding 7y : K — Ry compatible with vx. Denote
by Iso(no, K<p, Ro) the set of all extensions 1<, ¢ of 79 to K<,. This set is
a principal homogeneous space over G, = G(L).
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Choose a lift n : O(K) — Wiy (Rp) such that n mod p = 19 and no = o).
Proceeding similarly to Subsection 1.1 we can identify the set of all lifts
Mo,<p Oof no from Iso(no, K<p, Ro) with the set of all (commuting with o)
lifts <, of n from Iso(n, O(K<p), War(Ro)).

Specify uniquely each lift 7., by the knowledge of n,(f) € Lg, in the
set of all solutions f’ € Lg, of the equation o f’ = n(e) o f’. (The elements
e € Lx and f € Lx_, were chosen in Subsection 1.4.)

Consider the appropriate submodules M C Lx, M, C Lx_, from
Subsection 3.4 and define similarly

MRO = Z Sisﬁ(s)m(R) + C(p)Ro C »CRO ,
1<s<p
where m(R) = Wi (mpg). We know that e € M, f € M., and for similar
reasons, all <, (f) € Mg,.
LEMMA 4.2. — With above notation suppose that
n(e) = emod SP~* Mp,.
Then there is ¢ € SP~' Mg, such that n(e) = ocoeo (—c).

Proof. — Note that SP~' Mg, is an ideal in Mg, and for any i € N and
m € SP7LC;(Mp,), there is ¢ € SP71C;(Mp,) such that oc —c = m. (Use
that o is topologically nilpotent on SP~1C;(Mg,).)

Therefore, there is ¢; € SP~1 Mg, such that n(e) = e + oc; — ¢;. This
implies that n(e) o c; = ocp 0 emod SP~1Cy (Mg, ). Similarly, there is cp €
SP=1C5 (MR, ) such that n(e)ocy +ca = oca +oeioeq and n(eg) ocpocy =
ocg 0 ocy o egmod SPT1C3(Mp, ), and so on.

After p — 1 iterations we obtain for 1 < ¢ < p the elements ¢; €
SP=1C;(Mp,) such that

ne)o (e o0 cp1) = alepr 0 0cr) o
The lemma is proved. |

The above lemma implies the following properties:

PROPOSITION 4.3.

(a) If n(e) = emod SP~' My, then for any n<, € Iso(n,K<,, Ry), there
is a unique I € G(L£) mod G(L(p)) such that

nep(f) = f o lmod S* T Mp, |
(b) Suppose n',n" : O(K) — Wi (Ry) are such that
7' (t) = 1" (t) mod SP~ Wy, (mpg) .
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It n_, € Iso(n',0(K<p), W (Ro)) and 17, € Iso(n”,0(K<p),
War(Ryp)) then there is a unique | € G(L) such that

1y (f) =02, (f) o lmod SP~* M, .

4.4. Upper ramification numbers v(K|[s, M]/K)

The action of I' = Gal(K /K) on Ry is strict and, therefore, the elements
g € I'' can be identified with all continuous field embeddings g : Ksep — Ro
such that g|x belongs to the set (19) = {7 | a € Z}.

Extend 79 now to a continuous embedding 7 : O(K) — Wy (Rp)
uniquely determined by the condition 7(¢) = te. Clearly, 7 commutes with
0. Then the results of Subsection 1.1 imply that the elements of I" are iden-
tified with the continuous embeddings g : O(Ksep) — Wiar(Ro) such that
gloc) belongs to the set (7).

Consider hy € Aut(K) such that ho(tg) = toE(1, Smodp) and hol = id.
Then its lift h € AutO(K) such that h(t) = tE(1,S) commutes with ¢ and
there are the appropriate groups Gn and Gy, from Section 3.

Clearly, h(t) = 7(t) mod SP~'mp and we can apply Proposition 4.3(b).
This implies that the -orbit of fmod SP~!Mp, is contained in the Gh-
orbit of fmod SP~!Mp,. Therefore, there is a map of sets k : I' — G,
uniquely determined by the requirement that for any g € T,

(ide ® 9)f = (idz ® k(g))f mod SP~ ' Mp, .
(Use that Gy strictly acts on the Gn-orbit of fmod SP~t Mg, .)
PROPOSITION 4.4. — & induces a group isomorphism k< : I'cy — Gy,.

Proof. — Suppose g1,9 € I'. Let ¢ € L and A € Aut £ be such that
(idz ®@ k(g))f = co(A®idk_,)f. Then we have the following congruences
modulo SP~! Mg,

(ide ® k(g19)) f = (de ® g19) f = (idz ® g1)(idz ® g) f
(idz ® g1)(idz ® K(9)) f = (idz ® g1)(co (A®idk_,)f)
(ide ® g1)co (A® g1)f = (ide ® k(g1))co (A® k(g1))f
(ide @ K(g1))(co (A®idx_,)f) = (ide @ k(g1))(ide @ K(g)) f
= (idz ® k(g1)k(9)) f

and, therefore, k(g19) = k(g1)x(g) (use that G, acts strictly on the orbit
of f).
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Therefore, x factors through the natural projection I' — I', and defines
the group homomorphism k), : I'c, = Gp.

Recall that we have the field-of-norms identification T = G and, therefore,
K<p identifies the groups k(I) and G(L£/L(p)) C Gn. Besides, « induces a
group isomorphism of <T0>Z/pM and <h0>z/pM. Now Proposition 4.1 implies
that k<, is isomorphism. |

Under the isomorphism k., the subfields K[s, M] C K<, where 1 < s <
p (cf. Subsection 3.5), give rise to the subfields K[s, M] C K., such that
Gal(Kl[s, M]/K) = I‘/F”M Cs41(T). In other words, the extensions K[s, M]
appear as the maximal p-extensions of K with the Galois group of period
p™ and nilpotent class s.

Using that the identification G = T is compatible with ramification fil-
trations, cf. Subsection 4.2, we obtain the following result about the maxi-
mal upper ramification numbers of the field extensions K([s, M|/ K, where
MeNand 1 <s<p.

THEOREM 4.5. — If [K : Q,] < oo, ek is the ramification index of K
and (p; € K then for 1 < s < p,

S 1— 519
UKS,MK—6K<M+ >— =
(Kls, M]/K) )=
Proof. — Note first, that the Herbrand function ¢ / () is continuous
for all x > 0, gpg/K(O) = 0 and its derivative cp’;{/K equals 1 if x € (0,e*)
and equals p~™, if m € N and x € (e*p™ !
From Proposition 3.8 we obtain that

e p™).

o(K[s, M)/K) = max {o(K (ma) [ K), ¢z o (0" (5" = 1)) }

Note that v(K(mp)/K) = gpg/K(prle*) =e*+eg(M —1) and, there-
fore,
1
v(K[1,M]/K) =v(K(rp)/K) = ek (M+ pl) .
If 2 < s < p then v(K[s, M/K) equals
pM—l(se* _ 1) _pM—le*
pM

1
e (e 2) oL =
p—1 D

P PV T s =) = (M) +
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