Dr Qing Wang qing.wang@durham.ac.uk
Associate Professor
Dr Qing Wang qing.wang@durham.ac.uk
Associate Professor
S.L. Huang
Dr Qing Wang qing.wang@durham.ac.uk
Associate Professor
L.S. Peng
W. Zhao
Electromagnetic acoustic transducers (EMATs) are noncontact transducers generating ultrasonic waves directly in the conductive sample. Despite the advantages, their transduction efficiencies are relatively low, so it is imperative to build accurate multiphysics models of EMATs and optimize the structural parameters accordingly, using a suitable optimization algorithm. The optimizing process often involves a large number of runs of the computationally expensive numerical models, so metamodels as substitutes for the real numerical models are helpful for the optimizations. In this work the focus is on the artificial neural networks as the metamodels of an omnidirectional EMAT, including the multilayer feedforward networks trained with the basic and improved back propagation algorithms and the radial basis function networks with exact and nonexact interpolations. The developed neural-network programs are tested on an example problem. Then the model of an omnidirectional EMAT generating Lamb waves in a linearized steel plate is introduced, and various approaches to calculate the amplitudes of the displacement component waveforms are discussed. The neural-network metamodels are then built for the EMAT model and compared to the displacement component amplitude (or ratio of amplitudes) surface data on a discrete grid of the design variables as the reference, applying a multifrequency model with FFT (fast Fourier transform)/IFFT (inverse FFT) processing. Finally the two-objective optimization problem is formulated with one objective function minimizing the ratio of the amplitude of the S0-mode Lamb wave to that of the A0 mode, and the other objective function minimizing as the negative amplitude of the A0 mode. Pareto fronts in the criterion space are solved with the neural-network models and the total time consumption is greatly decreased. From the study it could be observed that the radial basis function network with exact interpolation has the best performance considering its accuracy of approximation and the time required to build the metamodel.
Wang, S., Huang, S., Wang, Q., Peng, L., & Zhao, W. (2017). Accelerated optimizations of an electromagnetic acoustic transducer with artificial neural networks as metamodels. Journal of Sensors and Sensor Systems, 6(2), 269-284. https://doi.org/10.5194/jsss-6-269-2017
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 14, 2017 |
Online Publication Date | Aug 16, 2017 |
Publication Date | Aug 16, 2017 |
Deposit Date | Aug 26, 2017 |
Publicly Available Date | Aug 29, 2017 |
Journal | Journal of Sensors and Sensor Systems |
Print ISSN | 2194-8771 |
Electronic ISSN | 2194-878X |
Publisher | Copernicus Publications |
Peer Reviewed | Peer Reviewed |
Volume | 6 |
Issue | 2 |
Pages | 269-284 |
DOI | https://doi.org/10.5194/jsss-6-269-2017 |
Public URL | https://durham-repository.worktribe.com/output/1351226 |
Accepted Journal Article
(827 Kb)
PDF
Published Journal Article
(1.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Air-Gapped Current Transformer simulation and accuracy assessment
(2022)
Presentation / Conference Contribution
Structure health monitoring of concrete structures using magnetic flux leakage
(2022)
Presentation / Conference Contribution
A comparison of air pollution in developed and developing cities: A case study of London and Beijing
(2022)
Presentation / Conference Contribution
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search