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Abstract. Electromagnetic acoustic transducers (EMATs) are noncontact transducers generating ultrasonic waves directly in 

the conductive sample. Despite the advantages, their transduction efficiencies are relatively low, so it is imperative to build 

accurate multiphysics models of EMATs and optimize the structural parameters accordingly, using a suitable optimization 

algorithm. The optimizing process often involves a large number of runs of the computationally expensive numerical 10 

models, so metamodels as substitutes for the real numerical models are helpful for the optimizations. In this work the focus 

is on the artificial neural networks as the metamodels of an omnidirectional EMAT, including the multilayer feedforward 

networks trained with the basic and improved back propagation algorithms and the radial basis function networks with exact 

and nonexact interpolations. The developed neural-network programs are tested on an example problem. Then the model of 

an omnidirectional EMAT generating Lamb waves in a linearized steel plate is introduced, and various approaches to 15 

calculate the amplitudes of the displacement component waveforms are discussed. The neural-network metamodels are then 

built for the EMAT model and compared to the displacement component amplitude (or ratio of amplitudes) surface data on a 

discrete grid of the design variables as the reference, applying a multifrequency model with FFT (fast Fourier 

transform)/IFFT (inverse FFT) processing. Finally the two-objective optimization problem is formulated with one objective 

function minimizing the ratio of the amplitude of the S0-mode Lamb wave to that of the A0 mode, and the other objective 20 

function minimizing as the negative amplitude of the A0 mode. Pareto fronts in the criterion space are solved with the 

neural-network models and the total time consumption is greatly decreased. From the study it could be observed that the 

radial basis function network with exact interpolation has the best performance considering its accuracy of approximation 

and the time required to build the metamodel. 

1 Introduction 25 

Nondestructive testing & evaluation (NDT & E) is the field in which different methods based on quite different physical 

mechanisms are employed to check critical components in various structures for defects or other potential threats, without 

harming the components or the structures in any way. The testing methods diversely include electromagnetic methods, 

ultrasonic methods, X-rays and so on. Structural health monitoring (SHM) is a closely related field where NDT & E methods 
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could be applied to collect information about parameters related to structural performance. Since large-scale structures 

occupy large areas, in SHM the monitoring system is often distributed in nature, and a number of sensors or transducers are 

used (Gao et al., 2016). In both NDT & E systems and SHM systems where ultrasonic waves are employed, the ultrasonic 

sensors or transducers are basic and at the same time critical components. Traditionally the piezoelectric transducers are used 

to generate and receive ultrasonic waves, while they rely on liquid coupling to transfer the mechanical energy into the 5 

components under investigation, and sometimes this requirement of coupling is not convenient. So some noncontact 

transduction methods have become popular in recent years for NDT & E and SHM applications based on ultrasonic waves. 

    Electromagnetic acoustic transducers (EMATs) are new transducers relying on electromagnetic effects to generate 

ultrasonic waves directly in the tested metal samples, according to Lorentz force or magnetostriction mechanism. EMATs 

are noncontact transducers, so they are promising in many situations where traditional piezoelectric transducers are not 10 

convenient, such as testing hot or moving samples. Composed of magnets and coils, they are also very flexible and capable 

of generating various kinds of waves such as the bulk waves and many types of guided waves (Thompson, 1973, 1979; 

Edwards et al., 2006). 

    Despite the obvious advantages, the energy transduction efficiencies of EMATs are relatively low compared to their 

piezoelectric counterparts (Hirao and Ogi, 2003). Often the signal of EMATs is at the level of several microvolts. With this 15 

situation, one imperative problem is to study the mechanism of the transducers further and build accurate theoretical models, 

and then try to design them optimally based on the models. The operations of EMATs are multiphysical in nature, and 

sometimes even nonlinearity exists, so their modelling is always a difficult task. 

    Here we mainly focus on the numerical models. Transient analysis of a meander-coil EMAT placed on isotropic 

nonferromagnetic half-space, assuming uniform static magnetic field was conducted in Ludwig and Dai (1991). The 20 

controlling eddy-current equations were studied in detail in Jafari-Shapoorabadi et al. (2001) and it was argued that the 

previous work using the total current divided by the cross section area of the conductor as the source current density was 

equivalently applying the incomplete equation, and this meant ignoring the skin effect and proximity effect, while we proved 

the opposite in Wang et al. (2016a) via customizing the underlying integrodifferential or normal differential equations. The 

finite element method (FEM) package COMSOL was used to build the electromagnetic model of a meander EMAT, and the 25 

simulated Lorentz force was exported to another package, Abaqus, as the driving force to excite Lamb waves in Dhayalan 

and Balasubramaniam (2010). The above-mentioned modeling work only involves nonmagnetic materials. There is also 

some initial work on modelling EMATs used to test magnetic material, which we will not discuss further here. 

    With proper models of EMATs, the next step is to optimize their design so as to maximize the testing performance. 

The work on optimizations of EMATs is still rare. A parametric study of an EMAT composed of a racetrack coil was 30 

conducted in Mirkhani et al. (2004) by varying the ratio of the width of the magnet to the width of the coil, and it was found 

that if this ratio was set at 1.2, the amplitude of the ultrasonic beam would be improved. One design variable and one 

objective function were used in this optimization, accomplished only through observation of a set of curves corresponding to 

different design variables, instead of using a real optimization algorithm. A spiral coil EMAT was optimized using genetic 
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algorithm optimization procedure in the global optimization toolbox of Matlab in Seher et al. (2014, 2015). The ratio of the 

amplitude of the A0-mode Lamb waves to that of the S0 mode was selected as the objective function to be maximized, i.e., 

preferably generating the A0 mode. 

    In the evolutionary optimization algorithms, a complex numerical model is evaluated a great number of times, which is 

very time-consuming. In order to resolve this problem, an alternative mathematical model could be built to approximate the 5 

original computationally expensive numerical model, i.e., the evaluations of the original model could be replaced by the 

evaluations of the computationally less expensive approximate model, called a metamodel, surrogate model, etc. 

Implemented with polynomials, kriging, radial basis functions, and so on, the metamodels are already applied in 

electromagnetic device design and optimization (Sykulski, 2008), but seldom found in the field of ultrasonic NDT, or 

optimization of EMATs, so we explore one type of metamodel, the artificial neural networks here in the context of EMAT 10 

design and optimization. Obviously neural networks are used widely in many different situations, and being used as a 

metamodel is only one of their applications. 

In this work we focus on the artificial neural networks as function approximators, or as metamodels of computationally 

expensive numerical models. Multilayer feedforward networks and radial basis function networks are both considered. Their 

performances for function approximations are tested on an example problem, with programs developed by the authors. Then 15 

modeling of an EMAT with COMSOL is discussed briefly, and methods to calculate the amplitudes of the displacement 

components of the generated Lamb waves are introduced. Finally the neural networks are applied as metamodels in the 

optimizations of the EMAT to accelerate the whole process. 

 

2 Artificial neural networks as function approximators 20 

There are many parameters in the finite-element model of an EMAT, such as the geometrical parameters, the magnitude and 

number of periods of the tone-burst waveform of the current excitation signal, the strength of the magnet, the material 

parameters, and so on. We can select a subset of the parameters as the inputs of a forward model. Similarly, with the FEM 

model, different quantities could be solved, including the spatial distributions of the magnetic, eddy current, force and 

displacement fields at some time instants; the waveforms of the displacement, stress and strain components at a point; some 25 

extracted features of the waveforms; etc. Some of the solved quantities can serve as the outputs of the forward model. Then 

this forward model is used in the optimizations in an iterative way. The forward model is a black-box function mapping the 

inputs (design variables in the optimizations) to the outputs (objective functions in the optimizations). Evaluations of the 

black-box function are of-ten computationally expensive. Considering this, we want to approximate the function or forward 

model and substitute the approximation for the real forward model in the optimizations, where a great number of evaluations 30 

of the function are required. 

Artificial neural networks are widely used in different fields. We are interested here in their abilities to approximate 

computationally expensive functions or the forward models of EMATs. Two different kinds of neural networks are 

considered. The first kind is the multilayer feedforward network, and the second kind is the radial basis function network. 
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These two networks have different structures and different approaches to implementing approximations of functions. 

We review important concepts and algorithms of these networks and test them on a mathematical function. All the related 

code were implemented by the authors in Matlab. In the descriptions of the networks, vectors and matrices are used 

whenever possible to simplify the expressions. 

2.1 Multilayer feedforward network 5 

The structure of a two-layer feedforward neural network is shown in Fig. 1. There are N1 neurons in the first (hidden) layer 

and N2 neurons in the second (output) layer. Superscript is used to indicate the number of the layer. The vector x is the input 

column vector with NI elements, and y is the corresponding output column vector with NO = N2 elements. In layer 1, W1 is 

the N1 x NI weight matrix, arranged such that the elements of the ith row correspond to the weights of the input elements 

x1,…, xNI into the ith neuron. Then for the column vectorW1x, each element is a linear combination of x1; : : :;xN
I . The term 10 

b1 is the bias column vector with one element for each neuron. The term n1 =W1x +b1 is the net input to the transfer function 

f 1 of layer 1, of which the output a1 = f 1(n1) is also the input to layer 2. Similar equations exist for layer 2, i.e., the final 

output is y = f 2(n2), in which the net input is n2 =W2a1 +b2. Bold font is used for f1 and f2 to stress that these functions accept 

a vector and generate a vector. Operating on one element of the net input vector, the scalar transfer function f can take the 

following typical forms (Hagan et al., 2014). 15 

 

    For the purpose of function approximation, we use the two-layer network in Fig. 1. The transfer function of the first layer 

could be the log-sigmoid function or the tangentsigmoid function, while the transfer function of the second layer is the linear 

function. NI is the number of input variables, and N2 = NO is the number of output variables. Next we must choose N1, the 

number of neurons in the hidden layer, and apply some training algorithm to compute the best possibleW1, b1, W2 and b2. 20 

 

Figure 1. Multilayer feedforward neural network 

 2.1.1 Basic back propagation 

A widely used training algorithm for the multilayer neural network is the back propagation algorithm. Suppose the set of 

known input vectors is ���	, … , ���, and the corresponding set of known target vectors is �	�	, … , 	��, In iteration k of the 25 
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training process, one randomly selected input vector x(k) is presented to the network, so the corresponding error vector is 

e(k) = t (k)-y(k). The performance index to minimize for the current iteration is 

 

 

According to the steepest descendent algorithm, the updating equations for the weight matrix and bias vector of layer m is 5 

 

in which α is the learning rate. Here we define a0 = x in Fig. 1. sm is the vector of sensitivity with element,  
�� =	 ��
����

, i.e., 

derivative of the performance index P with respect to the ith net input of layer m. The sensitivity of every layer is solved 

according to the recurrence equation, 

 10 

 

in which, 

 

where fm is the scalar transfer function of layer m. 

From Eq. (4), the sensitivity vectors of previous layers could be calculated from the sensitivity vector of the last layer 15 

recurrently, from which the name “back propagation” derives. 

As the starting point for the equation, the sensitivity vector for the last layer (layer M) is 

 

To evaluate the capability of the two-layer network, trained with the basic back propagation algorithm, to approximate 

functions, we test the developed program on the following problem (Branin function) with two inputs and one output. 20 

 

The contour plot of this function is shown in Fig. 2a. 

    Figure 2b is the contour plot of the approximation by the multilayer neural network trained with the basic back 

propagation algorithm. The training data are sampled on a 30 x 30 grid of the two input variables. The transfer function of 

the first layer is the log-sigmoid function. A total of 60 neurons are used in the hidden layer, and 4 x106 iterations are 25 
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applied. The learning rate is α = 0.005. The original function in Fig. 2a and the approximation in Fig. 2b are both generated 

on a 60 x 60 grid. 

2.1.2 Improved back propagation 

The basic back propagation algorithm is based on the steepest-descendent algorithm. Newton’s method could be applied to 

achieve improvement on the basic algorithm, called the Levenberg–Marquardt (LM) back propagation (Hagan et al., 2014). 5 

All the training data are presented to the network at the same time. The error vector corresponding to the qth input xq is eq = 

tq -yq . The components of Q error vectors are arranged into one column vector, 

 

For element ei,j , subscript i represents position in the error vector ej. The total number of error components in e is Ne = Q x 

NM. 10 

The performance index to minimize is 

 

in which k is the number of iteration. 

The unknown variables to solve, including the weights and the biases, are also arranged into one column vector: 

 15 

The total number of variables is Nv  = N1(NI +1) + N2(N1 + 1) + … + NM (NM-1 +1). 

The Jacobian matrix is defined as 

 

The updating equation for the unknown variables is 

 20 

in which � is a small value added to the diagonal elements of JT J to ensure that it is invertible. 

    The most difficult part is calculating the J matrix. The elements of J could be solved with sensitivity back propagation just 

like in the basic back propagation algorithm. The processing here is more complex because there are Ne sensitivity vectors to 

propagate, instead of one sensitivity vector per iteration in the basic algorithm. This training algorithm of the two-layer 

network is also implemented and tested on the example problem. 25 

The result of approximation of the test function with the multilayer network trained with the LM algorithm is shown in Fig. 

2c. A total of 60 neurons are used in the hidden layer, and 800 iterations are applied. 
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Figure 2. Test function and the approximations 

2.2 Radial basis function network 

Another candidate neural network for function approximation is the radial basis function neural network (RBFNN). The 5 

basic structure of RBFNN is shown in Fig. 3. There are NC neurons in the first (radial basis function, hidden) layer, and N2 

neurons in the second (linear, output) layer. In the RBFNN, the matrix C no longer contains weights applied to the elements 

of the input vector. Instead, the distance (represented with ‖. ‖) between the input vector and each row of the matrix C is 

computed to generate a NC x1 column vector, which is then multiplied element by element (represented with .x) with the 

scale vector s.  10 

    The transfer function of the radial basis function layer is Gauss function, 

 

which is a bell-shaped function concentrated at n = 0. Then for the first RBFd layer, we have 

 

 15 

 

in which ci is the transposition of the ith row of C, i.e., 
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    The transfer function of the second layer is the linear function defined in Eq. (1), so element k of the output vector y is 

 

 5 

Since the transfer function f1 is a local function around scalar 0, equation Eq. (16) states that the output component yk is a 

linear combination of NC local functions, each concentrated around ci and scaled by si , and finally biased by bk. 

The distance operator ‖. ‖makes the output of the transfer function f1 symmetric about center vector ci , from which the name 

“radial basis function” derives. 

 10 

Figure 3. Radial basis function neural network 

 

    Training of the RBFNN is quite different from that of the general multilayer networks. Normally the process is divided 

into two stages. In the first stage, the centers (rows of C) and scales (elements of s) are selected according to some criterion. 

Generally the centers should be distributed evenly in the input space. The scales should be set so that the adjacent basis 15 

functions overlap somewhat with each other. In the programs developed for this work, a spread parameter is used to specify 

the scale as  
 = 	 �����
�

������ , so that if the distance is spread, the basis function drops to half the maximum value. In the second 

stage, C and s are fixed, and W and b are solved. 

 

2.2.1 Exact interpolation 20 

One common scheme is to select the centers of the radial basis functions as the input vectors. Then the number of centers 

NC will be equal to the number of the known input vectors Q. For now we focus on one output component, yk. If we let the 

function approximation pass through the known input/ output data, assuming b = 0, 

 

 25 
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in which the second subscript of y is the index of the input vectors. 

In matrix form, 

 

in which the element of matrix R is Ri.j = f1(
 !�� − � !), wk = (wk,1, …, wk,Q)T , and yk = (yk,1, …. yk,Q)T. 

In the system of equations Eq. (17), the number of unknown weights and the number of equations are equal, so the weights 5 

could be solved with matrix inversion as wk = R-1yk. An exact interpolation is obtained, because the approximation passes all 

the known data pairs. If there are multiple outputs (NO > 1), the previous process could be repeated for every output 

component in the set #$�, $%, …$&'(. 
    The disadvantage of the approach of exact interpolation is that we need as many radial basis functions as the number of 

the input vectors, so there will be too many basis functions or neurons in the hidden layer when many input vectors are 10 

available. Another problem is that if the data contain noise, the exact interpolation will lead to overfitting. This is better 

demonstrated with a simple problem. Figure 4 shows the function y = sin(x), x ∈ [0, 2*], its samples with noise (level of 

0.1), exact interpolation with RBFNN and the nonexact interpolation. 

    The result of approximation of the test function with the RBF network with exact interpolation is shown in Fig. 2d. 

 15 

Figure 4. Exact and nonexact interpolations of a sine signal with noise. 

 

The input vectors are generated on the 30 x30 grid, and they are also used as the centers of the radial basis functions. The 

spread parameter is 0.5, so that the value of the basis function drops to 1/2 of the maximum value at a distance of 0.5 from 

the center. 20 

In the process of structural optimization, the geometry of the EMAT model is continuously changing, so that the mesh of the 

model or, more specifically, the number of the elements, the coordinates of the nodes, etc. are also changing. In this way a 

noise or random error exists in the optimization process. For this reason, it is necessary to check the nonexact interpolation 

and compare the result with that of the exact interpolation to see the effect of meshing noise. 

 25 
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2.2.2 Nonexact interpolation 

With the disadvantages of the version of the RBF network using exact interpolation, one modification is to use fewer radial 

basis functions in the hidden layer. The centers of the basis functions are not required to be in the set of the known input 

vectors. 

We focus on one output component yk. The performance index is 5 

 

In which eq = tk,q – yk,q. 

The augmented vector of unknown variable is  

 

 10 

In which wk is transposition of the kth row of W as 

 

 

For input vector xq, the augmented input to the second layer is  

 15 

Next we define 

 

Then the vector of weights and bias of the second output layer is solved as 

 

in which 20 

 

 

The term + denotes a small value added to diagonal elements of UT U to prevent overfitting. 

    The result of approximation of the test function with the RBF network with nonexact interpolation is shown in Fig. 2e. 

The input vectors are generated on the 30 x 30 grid. The centers of the radial basis functions are generated on the 30 x 30 25 

grid. The spread parameter is 0.2. 
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3 Time- and frequency-domain modelling of an omnidirectional EMAT 

We consider an omnidirectional EMAT composed of a spiral coil and a cylindrical permanent magnet, used to generate 

omnidirectional Lamb waves in a plate. 

    The coil is composed of tightly wound copper wires, instead of forming a meander pattern, so both S0-mode and A0-mode 5 

Lamb waves will be generated. In this work, the aim is to preferably generate A0-mode Lamb waves, so we built the model 

bearing this preference in mind. Justification of this choice of wave mode could be found in Huthwaite et al. (2013), where it 

was explained that the thickness variations were more sensitive with the A0 wave mode. 

    In this section, the formulations of an axisymmetric EMAT are given first (further details can be found in Wang et al., 

2016b), and then the numerical model is described. 10 

 

3.1 Formulations of an axisymmetric EMAT 

The basic equations for the electromagnetic field simulation in the study of EMATs are Maxwell’s equations (Ida, 2007). 

 

 15 

 

 

These equations are Faraday’s law, Ampere–Maxwell’s law, Gauss’s law for electric fields and Gauss’s law for magnetic 

fields, respectively. E is the electric field, B is the magnetic flux density, t is the time variable, H is the magnetic field 

strength, J is the current density, D is the electric flux density, and ρ is the charge density. The term ∇x denotes curl of 20 

vector, and∇. is divergence of vector. Since the frequency in normal EMAT operation is no higher than several MHz, the 

term 
�/
�0  in Ampere–Maxwell’s law could be neglected. 

To solve Maxwell’s equations, another set of equations called the constitutive equations is needed: 

 

 25 

in which μ is the magnetic permeability, and ϵ is the dielectric constant. 

Because the magnetic flux density is solenoidal, magnetic vector potential (MVP) A is introduced through 

 

The following Columbo gauge is applied to define the MVP completely: 

 30 

With the MVP, the equation describing the eddy-current phenomenon is 
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in which ∇2is the vector Laplacian operator, σ is the conductivity, and Js is the source current density. The eddy-current 

density, not written explicitly in Eq. (34), is Je =- σ
�3
�0  . This equation holds where there is a conductor and a source current 

flows inside of this conductor. At the region without the source current, the Js term is dropped. Where there is no conductor, 

like in the air, the negative eddy-current density term σ
�3
�0  (or -Je) is also dropped. The magnetic permeability	μ appears in 5 

the denominator in Eq. (34), which implies that the material is isotropic. Besides this, an additional assumption in this work 

is that the material is linear, so that μ is fixed (uniformly distributed) in every material of the model. 

For 2-D axisymmetric field simplification assuming Js is perpendicular to the r–z plane, we have Js = 456	�7, with 4�6 as 

the ϕ component of vector Js , and 96 as the unit vector along the  ϕ axis. We also have A =:6	�7 . The term ∇2A (the vector 

Laplacian operator applied on vector A) has to be treated carefully because, unlike in the Cartesian coordinates, we have in 10 

cylindrical coordinates 

 

Instead, the ϕ component of	∇2A is 

 

in which the scalar Laplacian operator applied on scalar :6 is 15 

 

    In a 2-D axisymmetric model, only the :6 component is nonzero, and it is independent of ϕ : 

 

Then the ϕ component of ∇2A is simplified as 

 20 

From now on, A_ will be written as A and 4�6be written as Js for simplicity. With this notation, the vector Eq. (34) is 

transformed to the	 ϕ component scalar equation: 

 

This equation is a diffusion equation describing the eddy-current phenomenon in cylindrical coordinates. Now the eddy-

current density term is Je =- σ
�3
�0  . 25 

   Next, it is crucial to correctly decide the source current density term Js. One inaccurate way is to define total current 

divided by cross section area of the source conductor as the source current density. This definition was borrowed from 

magnetostatic simulation of magnetic field generated by a steady electric current. In alternating current simulation, the 
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externally applied total current i should be the integral of the sum of the source current density Js and the eddy-current 

density Je, 

 

 

in which S is the cross section of the source conductor. Unlike in the 2-D planar model, Js is no longer uniformly distributed 5 

in the cross section of the source conductor in cylindrical coordinates; instead, the product of Js and r is a constant for a 

particular conductor, i.e., Js is inversely proportional to r: 

 

where C is a constant with a different value for each source conductor. Combined with Eq. (41), the constant C could be 

derived as 10 

 

so the original eddy-current equation Eq. (40) in cylindrical coordinates could now be written as 

 

For steady-state or frequency-domain analysis, the phasor notation is adopted: 

 15 

in which the dots on A and i indicate they are complex phasors, ω is the angular frequency, and j is the imaginary unit. This 

steady-state equation was proposed in Preis (1983), following the work on the similar steady-state integrodifferential 

equation in a 2-D planar model in Konrad (1981). 

    In Wang et al. (2016b), we proposed solving the above integrodifferential equations in time and frequency domains via 

customizing the underlying equations in COMSOL package. 20 

The model of an EMAT is multiphysics in nature. Besides the above electromagnetic equations, the equations describing 

the generation and propagation of the ultrasonic waves in an elastic solid are as follows (Auld, 1990). 

 

These equations are equation of motion, Hook’s law and strain-displacement relation, respectively. T is the stress tensor, +, 
is the density (symbol’ is used to differentiate it from charge density in Maxwell’s equations), F is the body force, c is the 25 
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stiffness tensor, S is the strain tensor, and u is the displacement vector. The symbol : is the double dot product of a fourth 

rank tensor c and a second rank tensor S, and ∇s u is the symmetric part of the gradient of the vector u.  

    For homogenous and isotropic media, from the above elastodynamic equations, Navier’s equation could be derived as 

 

Here, λ	and �= are Lamé constants. The symbols ‘in �= is used to differentiate it from the magnetic permeability. 5 

    The link between the electromagnetic equations and the elastodynamic equations is the Lorentz force defined as 

 

in which B is the total magnetic flux density composed of the static flux density B0 of the bias magnet and the dynamic flux 

density Bd generated by the excitation coil. For moderate magnitude exciting current, the Bd term is usually very small 

compared to B0. 10 

 

3.2 The omnidirectional EMAT model 

The complete EMAT model is composed of one magnetostatic submodel describing the magnetic field of the permanent 

magnet, one eddy-current submodel analyzing the eddy-current phenomenon accompanied by the skin and proximity effects, 

and one elastodynamic submodel for the simulation of generation and propagation of Lamb waves in the plate. The two 15 

electromagnetic submodels share one geometry containing the air, the inner section of the plate, the copper wires and the 

permanent magnet, as in Fig. 5. Note that in this geometry only the inner section of the full plate is modeled. The 

elastodynamic submodel has its own geometry, only containing the full plate. The Lorentz forces calculated from the two 

electromagnetic submodels are transferred to the elastodynamic submodel as the driving forces of Lamb waves. With these 

two geometries, the structure of the EMAT model is very clear, compared to some previous work. 20 

Additionally, we can use different meshing rules for these two geometries, according to the respective physics. This two-

geometry treatment is valid because the Lorentz forces are confined in the region of the plate just under the transducer. 

 

Figure 5. The geometry of the electromagnetic submodels. This geometry is used for magnetosatic analysis and eddy-

current analysis. 25 
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In Fig. 5, it is only necessary to consider the region where r > 0, since this is an axisymmetric model. The testing 

frequency is 50 kHz. As in Seher et al. (2014), the relative magnetic permeability of the steel plate is 160, i.e., it is a 

simplified linear material. The conductivity is 4.032MSm-1. The thickness of the plate is 10 mm. The remanent magnetic flux 

density of the magnet is set to 1.3 T along the positive direction of the z axis. RM is the radius of the magnet, and lM is the 5 

liftoff distance of the magnet from its base to the top of the coil. The two parameters of RM and lM will be used as the design 

variables in the optimizations based on the genetic algorithm and the neural-network metamodels, while all the other 

parameters are fixed. 

RC is the average radius of the coil decided as 

 10 

 

in which _ is the wavelength of the desired Lamb wave mode. For the EMAT on the steel plate, n is chosen to be 1, i.e., RC = 

>
? , similar to Seher et al. (2015). 

As stated previously, we want to selectively generate A0- mode Lamb waves. For A0-mode Lamb waves in a steel plate of 

10mm thickness at 50 kHz, from the dispersion curves generated with a program we developed, the phase velocity is 15 

1867.78ms-1, and then the wavelength λ is 37.36 mm. 

    WC is the radial width of the coil (difference between the outer and inner radii of the coil). The coil is composed of two 

layers of copper wires with conductivity as 5.998x107 Sm-1. The wires form an array of 23 columns and 2 rows, as inWilcox 

et al. (2005). The wires have rectangular cross sections. The radial width of each wire is 0.3 mm, and the radial gap between 

adjacent wires in the same layer is 0.1 mm. The axial height of the wire and the gap between the two layers are both 0.1 mm. 20 

We have chosen to model each wire individually, so that all the formulations in Sect. 3.1 are applicable. 

The geometry of the elastodynamic submodel simply contains a full plate with a radius of 1.2 m. Young’s modulus is 200 

x109 Pa, Poisson’s ratio is 0.33, and the density is 7850 kgm-3. The observation point to record the displacement components 

in the simulations is located at 60 cm from the z axis, in the middle plane of the plate. From the displacement wave 

structures of Lamb waves with the specified frequency and plate thickness, at the middle plane of the plate, the displacement 25 

component u  = ur only corresponds to the S0 mode, while the other component w = uz only corresponds to the A0 mode. 

    The boundaries of the submodels must be handled with care. In the geometry for the electromagnetic submodels, there is a 

layer of infinite elements at the air boundary simulating an air region extending infinitely. In the geometry of the 

elastodynamic submodel, the top and bottom boundaries of the full plate are free boundaries without constraints or loads. For 

a transient time-domain analysis, the outer edge of the plate (at r = 1.2 m) is also a free boundary. If the full plate is long 30 

enough in the radial direction and the total time of simulation is limited to a proper value, the reflections from the end of the 

plate can be avoided. For a frequency-domain analysis, an extra perfectly matched layer (PML) must be added to the end of 

the plate so that the energy in the plate can dissipate. 
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To further increase the accuracy of the model, fillets are added to the sharp corners of the magnet and the wires, so that the 

geometrical singularities are removed, while at the same time the number of elements and hence the complexity of the model 

is also increased. 

 

4 Evaluations of the amplitudes of the displacement components 5 

In optimizations of the EMAT, the amplitudes of the displacement components will be used to calculate the objective 

functions, so we must decide how to evaluate the amplitudes. We explore three approaches as in the following subsections. 

 

4.1 Amplitudes from time-domain simulations 

A natural choice is to do time-domain simulations and record the time waveforms of the displacement components and then 10 

calculate the envelopes of the waveforms and solve the maximum values as the amplitudes. These time-dependent 

simulations require small time steps to ensure the convergence, and thus are very time-consuming. Since we will apply 

evolutionary optimization algorithms, a great number of evaluations of the objective functions will be needed, so this 

approach is not practical. Nevertheless the time waveforms will be simulated, serving as references to test the other 

approaches. In this work, the number of time steps is usually set as 6000, for the tone-burst excitation signal x(t ) composed 15 

of 5 sinusoidal periods modulated with a Hanning window function. 

 

4.2 Amplitudes from frequency-domain simulations and the FFT/IFFT processing 

The second approach is to transform the excitation time-domain burst signal into its spectrum with FFT, input them into the 

frequency-domain model of the EMAT, transform the resulting modified spectrum back into time domain with IFFT to 20 

obtain the time waveforms of the displacement components, 

 

 

in which ℱ represents the Fourier transform, ℱ��	is the inverse Fourier transform, x(t ) is the input tone-burst signal, Hu(ω, 

RM, lM) is the frequency response for the displacement component u, and Hω (ω, RM, lM) is the frequency response for the 25 

displacement component ω. RM and lM are included to stress that these frequency responses change with the design 

variables, while the input signal x(t ) is fixed. From the converted time waveforms, the envelopes are calculated and the 

peaks of the envelopes are solved as the desired amplitudes. 

    The spectrum of the excitation signal is bell-shaped and concentrated around the center frequency, so we could focus on 

the part of spectrum which is bigger than some predefined threshold value. For example, this threshold might be defined as a 30 

percentage of the maximum value of the spectrum. Generally tens of or even several spectrum components are enough for 

this approach, so it is less time-consuming than the first approach where an excessive number of steps are required. As an 

example, u and ω waveforms from the time-dependent simulation and the frequency-domain model with FFT/IFFT 
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processing are compared in Fig. 6. The design variables are selected as RM = 8mm and lM = 1 mm. The threshold to select 

the frequency components is 10 %, that is, only the frequency components higher than 10% of the peak value of the 

spectrum are used, and others are discarded. With this threshold, 11 components around the center frequency are kept. From 

the figure, we can see that the time waveforms from the multifrequency model with FFT/IFFT processing are very close to 

the waveforms directly solved from the transient analysis. From various tests, we found that this is only possible when we 5 

model each wire of the coil individually. For other current sources, the waveforms from the two approaches are different. 

One important condition to apply the frequency model is that the whole model must be linear. This is satisfied only when 

the excitation current is small so that the dynamic magnetic field generated by the coil could be ignored. 

 

4.3 Amplitudes from frequency-domain simulations with one single frequency 10 

Since a narrow banded signal with spectrum around its center frequency is used in the testing, another possibility is using 

one single frequency in the frequency-domain model, i.e., resorting to a steady-state solution of the EMAT model. The 

solved displacement components are complex phasors, so their absolute values are used as the amplitudes 

 

 15 

in which AB  is the center frequency in radian, CD  is the complex phasor of u, and AD  is the complex phasor of ω. This 

approach, as an approximation of the second approach, is valid because the spectrum of the excitation is bell-shaped and 

concentrated around the center frequencyAB , and the frequency responses Hu and Hω change slowly around the center 

frequency. 

This method of evaluation of the amplitudes of the displacement components is the fastest. However, it should be stressed 20 

that this method is an approximation and so is not suitable when higher accuracy is desired. 

 

Figure 6. The u and ω waveforms from time-dependent simulation and frequency-domain model with FFT/IFFT processing 

 

5 Metamodels of the EMAT implemented with neural networks 25 

With the time-domain and frequency-domain EMAT models, as well as the discussed approaches to obtain the amplitudes of 

the displacement components at the observation point, we can already calculate the objective functions of the optimization 
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problem and solve the problem with some optimization algorithm. The approach using the frequency model with a single 

frequency seems the best because it is the fastest. 

    One problem is that the amplitudes from the single-frequency approach are only approximations. Now with the 

metamodels implemented with the artificial neural networks, we can resort to the more time-consuming multifrequency 

approach with FFT/IFFT processing, i.e., solving some sample points with the multifrequency approach, then building 5 

metamodels with these sample points, and finally employing these metamodels in the optimization algorithm. 

    With the design variables as the inputs, we are concerned with two outputs. The first is 
3E
3F , the ratio of the amplitude of u 

waveform to that of ω waveform, and the second is Aω, the amplitude of ω waveform. 
3E
3F and -Aω will be used as the two 

objective functions to minimize in the next section. 

    Since there are only two inputs, we can draw the surfaces of the outputs with respect to the two inputs. Figure 7 shows the 10 

3E
3F and Aω surfaces solved with the multifrequency model with FFT/IFFT processing, on a 50 x 50 grid of the design 

variables. This figure and the corresponding set of data will be used as a reference to test the performances of the neural-

network metamodels. On a computer installed with Intel Xeon CPU E5-2650 at 2.30 GHz and 128GBRAM, running the 

Windows 10 operating system, the total time to solve the 2500 samples is 478 071.7 s. In the 
3E
3F surface, there is a valley 

along the lM axis, indicating that 
3E
3F  is mainly determined by the RM value. Obviously the minimum value of 

3E
3F  should be 15 

in this valley. 

    Next we will build the neural-network metamodels based on a training set generated on a 25 x25 grid of the design 

variables, i.e., 625 uniformly distributed samples will be used as the known training data. The time to calculate the samples 

of the training set is around 33 h. 

First we explore the multilayer network with the basic BP algorithm. A total of 200 neurons are used in the hidden layer, 20 

the number of iterations is 6 x107, and the learning rate is 0.02. The transfer function of the hidden layer is the log-sigmoid 

function. The transfer function of the output layer is the linear function. In one test run of the program, the training time for 

the 
3E
3F function is 24 141.458 s, and the training time for the Aω function is 22 258.787 s. After the networks are built, the 

3E
3F 

and Aω functions are predicted with the networks on a 60 x 60 grid of the design variables, as shown in Fig. 8. The values of 

3E
3F  and Aω are both scaled to [-1, 1] before approximation with the network and the predicted values are scaled back 25 

accordingly to be drawn in the figure. From the figure it could be observed that the 
3E
3F surface is smoother than it should be 

at the valley, with Fig. 7 as the reference, although the number of iterations is already big. From various tests with different 

parameters, we found that the multilayer network with the basic BP algorithm is difficult to train. With the error of 

approximation, the performance of this network might not be satisfactory. 
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Figure 7. Au/Aω surfaces from multifrequency model with FFT/IFFT processing 

 

 

Figure 8. Au/Aω and Aω surfaces predicted with the MLP with basic BP algorithm 5 

 

    Then we test the multilayer network with the LM algorithm. 200 neurons are used in the hidden layer, and the number of 

iterations is 2000. The transfer functions are the same as in the previous network trained with the BP algorithm. In one run of 

the program, the training time for the 
3E
3F function is 1775.372 s, and the training time for the Aω function is 1763.376 s. 

After the networks are built, the 
3E
3F and Aω functions are predicted with the networks on a 60 x 60 grid of the design 10 

variables, as shown in Fig. 9. The values of 
3E
3F and Aω are also scaled in the same way. From the figure, we can see that the 

multilayer networks trained with the LM algorithm approximate the surfaces better, compared to the networks trained with 

the basic BP algorithm. 

Next we try the RBFNN with exact interpolation. All the 625 samples are used as the centers of the basis functions. The 

spread parameter is selected as 0.1 (normalized). In one run of the program, the time to build the network for the Au Aw 15 

function is 0.457 s, and the time to build the network for the Aw function is 0.372 s. Figure 10 shows the Au Aw and Aw 

surfaces predicted with the built networks, on a 60 x 60 grid of the design variables. From this figure, it could be observed 

that the performance of the RBFNN with exact interpolation is excellent. One notable phenomenon is that the noise in the 

surfaces relating to changing meshes are not big enough to cause overfitting. Compared to the multilayer feedforward 

networks, the additional advantage of the RBFNN is that the RBFNN model could be built very fast through simple 20 

algebraic calculations, instead of time-consuming iterative trainings. 
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Figure 9. Au/Aω and Aω surfaces predicted with the MLP with LM algorithm. 

 

 

Figure 10. Au/Aω and Aω surfaces predicted with the RBFNN with exact interpolation 5 

 

 Finally we test the RBFNN with nonexact interpolation. All the 625 samples are used as the centers of the basis functions. 

The spread parameter is selected as 0.18 (normalized). In one run of the program, the time to build the network for the 
3E
3F 

function is 0.436 s, and the time to build the network for the Aω function is 0.447 s. Figure 11 shows the 
3E
3F and Aω surfaces 

predicted with the networks, on a 60 x 60 grid of the design variables. From this figure, we can see that 
3E
3F is somewhat 10 

smoother than it should be in the valley, with reference to Fig. 7. So the performance with nonexact interpolation is not as 

good as that with exact interpolation. The built network models will be used in the optimizations of the EMAT. 

 

Figure 11. Au/Aω and Aω surfaces predicted with the RBFNN with nonexact interpolation 

6 Multiobjective optimizations of the EMAT accelerated with the neural-network metamodels 15 

In this section we consider the multiobjective optimizations of the omnidirectional EMAT. The design variables are the lift-

off of the magnet lM and its radius RM. The goal of optimization is to selectively generate the A0-mode Lamb waves. With 
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the special structure of the EMAT, inevitably both the S0 mode and the A0 mode will be generated at the same time. So one 

objective function to minimize could be set as the ratio of the amplitude of the S0 mode to the amplitude of the A0 mode. 

Using the ratio as the objective function only tells one side of the story. We also want to maximize the A0 mode directly, or 

set the negative amplitude of the A0 mode as the other objective function to minimize. With these considerations, the 

problem of multiobjective optimization of the EMAT could be formulated as 5 

 

 

The design variables RM and lM have upper and lower bounds as RM ϵ [2.15, 15] mm and lM ϵ [1, 3] mm.  

    In multiobjective optimizations, it will be difficult to obtain one single solution, because the multiple objective functions 

often conflict with each other, so generally we could only obtain a set of solutions in which no solution is better than other 10 

solutions on every objective functions. This set of solutions are nondominated solutions, and they form a Pareto front in the 

criterion space where the first objective function is used as the x axis and the second objective function is used as the y axis, 

in the problem where there are two objective functions. 

    A popular method to solve the approximated Pareto front in the criterion space is the multiobjective genetic algorithm 

(MOGA; Deb, 2001). With the MOGA, the set of solutions on the Pareto front can be solved with one single run of the 15 

program. We have developed the MOGA program to implement the multiobjective optimizations of the EMAT discussed in 

this work. The implemented genetic operators include uniform mutation, nonuniform mutation, Gaussian mutation, whole 

arithmetic crossover, simple crossover and single arithmetic crossover. Real coding is employed. As described in Wang et al. 

(2017), the internal status of the MOGA program is tracked carefully to avoid unnecessary evaluations of the objective 

functions, so as to decrease the number of evaluations and the total time needed to accomplish the optimization. This is 20 

possible because the program is stochastic in nature, so when the value of an individual is not changed by the genetic 

operation, the corresponding objective function should not be computed. 

    The results of the multiobjective optimizations using the MOGA and the neural networks as the metamodels of the EMAT 

are shown in Fig. 12. The number of generations in the MOGA is 300, and the number of individuals in the population is 30. 

Total time of optimization and the number of evaluations of the objective functions for different networks and algorithms 25 

from the test runs of the MOGA program are summarized in Table 1. By comparison, if we optimize the EMAT using the 

multifrequency approach without the proposed metamodels, nearly 9000 evaluations of the objective functions will cost 

around 20 days. One notable detail about Table 1 is that the number of evaluations of the objective functions is different for 

different networks and algorithms, even with the same number of generations and individuals in the genetic algorithm. This 

is understandable considering the mechanism we employed to reduce the number of evaluations of the objective functions. 30 

By tracking the internal status of the program and avoiding unnecessary evaluations, we incorporate additional randomness 

in the program, so the number of evaluations is not fixed. 
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    The scatter plot of the values of the objective functions solved on the 25 x 25 discrete grid of the design variables is also 

drawn in Fig. 12 as comparison. Obviously the Pareto front should be approximately the tangent line at the lower left corner 

of the scatter plot. From the figure, it could be observed that the RBFNN with exact interpolation has the best performance. 

The multilayer network trained with the LM algorithm has a similar performance. The RBFNN with nonexact interpolation 

is acceptable, except near the leftmost of the Pareto front. The performance of the multilayer network trained with the basic 5 

back propagation algorithm is poor compared to the other networks, since the solved solutions already enter the region of the 

scatter points corresponding to the data on the discrete grid of the design variables. This is normal because with this network, 

the performance of approximation is poor with the selected training parameters. 

 

Figure 12. Pareto fronts solved with the MOGA and the neural-network metamodels and scatter plot of the objective 10 

function values solved on the discrete grid of the design variables 

 

Table 1. Total time of optimization and number of evaluation of the objective functions 

Network and algorithm Time of optimization Number of evaluations of 

the objective functions 

Multilayer network with the BP 

algorithm 

15.694s 8937 

Multilayer network with the LM 

algorithm 

14.819s 8929 

RBFNN with exact interpolation 26.613s 8940 

RBFNN with nonexact interpolation 26.963s 8952 

 

7 Conclusions 15 

In this work, we explored the artificial neural networks as metamodels of an EMAT model for the purpose of optimizations. 

We are mostly interested in two kinds of neural networks: the multilayer feedforward networks (trained with the basic back 

propagation algorithm and the LM algorithm) and the radial basis function networks (with exact and nonexact 

interpolations). The basic structures and the training algorithms of these networks are reviewed, and the programs we have 

developed for this work are tested on an example problem. 20 
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    Then the formulations of an axisymmetric EMAT were given, and the model of an omnidirectional EMAT for the 

generation of Lamb waves on a linearized steel plate was introduced; only the Lorentz force was considered. The 

axisymmetric model was divided into two geometries and three submodels. Radial and axial displacement components, 

corresponding to the S0-mode and the A0-mode Lamb waves respectively, of an observation point at the middle plane of the 

plate were recorded to solve the two objective functions, one defined as the ratio of the amplitude of the S0 mode to that of 5 

the A0 mode, and the other defined as the negative amplitude of the A0 mode. 

    Next, three different approaches to calculate the amplitudes of the displacement components were discussed. The first one 

is solving the peaks of the envelopes of the time waveforms from time-domain simulations, which involves small time steps 

and is very time-consuming. The second one is transforming the input excitation signal into its spectrum and feeding the 

spectrum to the frequency model, then transforming the modified spectrum back to the time domain and solving the peaks of 10 

the envelopes of the time waveforms. The third one is using the magnitudes of the phasors of the displacement components 

directly, i.e., using a single frequency in the frequency model. The waveforms from the first and second approaches were 

compared. The reason why the third approach could be applied as an approximation when evaluating the amplitudes was 

also explained. 

With the data on a discrete grid of the design variables as the reference, Au/Aω and Aω surfaces were solved for the 15 

EMAT predicted with the neural networks. It could be observed that with the multilayer network trained with the basic BP 

algorithm, the Au/Aω is smoother than it should be in the valley. With the multilayer network trained with the LM 

algorithm, the predicted surfaces were close to the reference surfaces. With the RBFNN with exact interpolation, the 

performance of approximation is good while with nonexact interpolation, the value of Au/Aω is again smoother in the 

valley. For the multilayer networks, much work has to be done to tune the parameters of the network, i.e., the number of 20 

neurons in the hidden layer, and the number of iterations. The total time required to obtain the approximation with the 

RBFNN with exact interpolation is also much less than that with the multilayer networks, especially when the basic BP 

algorithm is applied. 

Finally the obtained neural-network models, as approximations of the objective functions with the multifrequency 

approach, are applied in the multiobjective optimizations. The first objective is the ratio of the amplitude of the u waveform 25 

(S0 mode) to that of the w waveform (A0 mode), and the second objective is the negative amplitude of the ω waveform. The 

multiobjective optimizations are accomplished with a MOGA program we have developed specifically for optimizations of 

EMATs. With the neural-network metamodels, we can use the more time-consuming multifrequency model, instead of using 

the approximate singlefrequency model. From the results of the multiobjective optimizations, the performance of the 

RBFNN with exact interpolation is the best, next comes the multilayer network trained with the LM algorithm, then the 30 

RBFNN with nonexact interpolation. The performance of the multilayer network trained with the basic back propagation 

algorithm is the poorest. 

Besides the work described above, the authors would like to suggest some topics to explore further, as potential future 

studies for interested readers. Some examples are as follows: 
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1. In this work implemented with our own code, the two objective functions are solved with their respective networks 

(two networks for two objective functions). What if we build all the neural networks with two outputs in the output 

layer directly? 

2. In this work the parameters of the networks are mainly found by trial and error. Can we incorporate a systematic way 

to find the best parameters for the neural networks automatically? 5 

3. Implementation of multiobjective optimizations of the EMATs with constraints. Anyway in applications, we will 

often meet with complex constraints, instead of the simple upper and lower bounds studied in this work. 

 

All the listed topics demand modifications to the neuralnetwork and/or the MOGA programs. 

 10 
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