R. Field
Analysis of the influence of module construction upon forward osmosis performance
Field, R.; Siddiqui, F.; Ang, P.; Wu, J.J.
Abstract
The potential of a commercial forward osmosis (FO) module to recover water from NEWater brine, an RO retentate, was assessed by taking an innovative approach to obtaining the mass transfer coefficients. The performance comparison of the spiral wound (S-W) FO module with that of the flat sheet laboratory unit suggests that the winding involved in S-W construction can adversely affect performance; the values for the S-W mass transfer coefficients were half of those expected. This first-of-its-kind performance comparison utilised coupons of the membrane and spacers taken from the module. The module was used both in the conventional manner for FO and in the reverse manner with the active layer facing the draw solution. Estimates of membrane parameters and mass transfer coefficients experiments for the two orientations were obtained using pure water, 10 mM and 25 mM NaCl solution on the feed side and 1 M NaCl as draw solution. The fouling potential of NEWater brine per se was found to be low. These are the first results with a S-W module that suggest potential for this niche application; nevertheless the level of the water flux through the S-W module clearly indicates that industrial applications of S-W FO will be constrained to special cases.
Citation
Field, R., Siddiqui, F., Ang, P., & Wu, J. (2018). Analysis of the influence of module construction upon forward osmosis performance. Desalination, 431, 151-156. https://doi.org/10.1016/j.desal.2017.09.003
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 6, 2017 |
Online Publication Date | Sep 18, 2017 |
Publication Date | Apr 1, 2018 |
Deposit Date | Oct 18, 2017 |
Publicly Available Date | Sep 18, 2018 |
Journal | Desalination |
Print ISSN | 0011-9164 |
Electronic ISSN | 1873-4464 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 431 |
Pages | 151-156 |
DOI | https://doi.org/10.1016/j.desal.2017.09.003 |
Public URL | https://durham-repository.worktribe.com/output/1346104 |
Files
Accepted Journal Article
(971 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Thermochemical conversion of biomass: Potential future prospects
(2023)
Journal Article
Permeate Flux in Ultrafiltration Processes—Understandings and Misunderstandings
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search