Alexandros Gkiokas
Cognitive agents and machine learning by example : representation with conceptual graphs
Gkiokas, Alexandros; Cristea, A.I.
Abstract
As machine learning (ML) and artificial intelligence progress, more complex tasks can be addressed, quite often by cascading or combining existing models and technologies, known as the bottom‐up design. Some of those tasks are addressed by agents, which attempt to simulate or emulate higher cognitive abilities that cover a broad range of functions; hence, those agents are named cognitive agents. We formulate, implement, and evaluate such a cognitive agent, which combines learning by example with ML. The mechanisms, algorithms, and theories to be merged when training a cognitive agent to read and learn how to represent knowledge have not, to the best of our knowledge, been defined by the current state‐of‐the‐art research. The task of learning to represent knowledge is known as semantic parsing, and we demonstrate that it is an ability that may be attained by cognitive agents using ML, and the knowledge acquired can be represented by using conceptual graphs. By doing so, we create a cognitive agent that simulates properties of “learning by example,” while performing semantic parsing with good accuracy. Due to the unique and unconventional design of this agent, we first present the model and then gauge its performance, showcasing its strengths and weaknesses.
Citation
Gkiokas, A., & Cristea, A. (2018). Cognitive agents and machine learning by example : representation with conceptual graphs. Computational Intelligence, 34(2), 603-634. https://doi.org/10.1111/coin.12167
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 21, 2018 |
Online Publication Date | Mar 9, 2018 |
Publication Date | May 31, 2018 |
Deposit Date | Jul 11, 2018 |
Publicly Available Date | Oct 4, 2019 |
Journal | Computational Intelligence |
Print ISSN | 0824-7935 |
Electronic ISSN | 1467-8640 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 34 |
Issue | 2 |
Pages | 603-634 |
DOI | https://doi.org/10.1111/coin.12167 |
Public URL | https://durham-repository.worktribe.com/output/1326306 |
Related Public URLs | http://wrap.warwick.ac.uk/98279/ |
Files
Accepted Journal Article
(2.1 Mb)
PDF
Copyright Statement
This is the accepted version of the following article: Gkiokas, Alexandros & Cristea, A. I. (2018). Cognitive agents and machine learning by example representation with conceptual graphs. Computational Intelligence 34(2): 603-634, which has been published in final form at https://doi.org/10.1111/coin.12167. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for self-archiving.
You might also like
Editorial: New challenges and future perspectives in cognitive neuroscience
(2024)
Journal Article
Using deep learning to analyze the psychological effects of COVID-19
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search