

warwick.ac.uk/lib-publications

Original citation:
Gkiokas, Alexandros and Cristea, Alexandra I. (2018) Cognitive agents and machine learning
by example : representation with conceptual graphs. Computational Intelligence
. doi:10.1111/coin.12167
Permanent WRAP URL:
http://wrap.warwick.ac.uk/98279

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
"This is the peer reviewed version of the following Gkiokas, Alexandros and Cristea,
Alexandra I. (2018) Cognitive agents and machine learning by example : representation with
conceptual graphs. Computational Intelligence . doi:10.1111/coin.12167 (In Press)
which has been published in final form https://doi.org/10.1111/coin.12167 . This article may
be used for non-commercial purposes in accordance with Wiley Terms and Conditions for
Self-Archiving."

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://dx.doi.org/10.1111/coin.12167
http://wrap.warwick.ac.uk/98279
https://doi.org/10.1111/coin.12167
http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms
http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms
mailto:wrap@warwick.ac.uk

Computational Intelligence, Volume , Number 000, 2015

Cognitive Agents and Machine Learning by Example: Representation with

Conceptual Graphs

ALEXANDROS GKIOKAS, ALEXANDRA I. CRISTEA

Computer Science Department, University of Warwick,CV3 7AL, Coventry, United Kingdom

As Machine Learning and Artificial Intelligence progress, more complex tasks can be addressed, quite often

by cascading or combining existing models and technologies, known as the bottom-up design. Some of those tasks

are addressed by agents, which attempt to simulate or emulate higher cognitive abilities that cover a broad range of

functions; hence those agents are named cognitive agents. We formulate, implement and evaluate such a cognitive

agent, which combines learning by example with machine learning. The mechanisms, algorithms and theories to

be merged when training a cognitive agent to read and learn how to represent knowledge, have not, to the best of

our knowledge, been defined by the current state-of-the-art research. The task of learning to represent knowledge

is known as semantic parsing, and we demonstrate that it is an ability that may be attained by cognitive agents

using machine learning, and the knowledge acquired can be represented by using conceptual graphs. By doing so,

we create a cognitive agent that simulates properties of ’learning by example’, whilst performing semantic parsing

with good accuracy. Due to the unique and unconventional design of this agent, we first present the model, and then

gauge its performance, showcasing its strengths and weaknesses.

Key words: Learning by Example, Machine Learning, Cognitive Agents, Semantic Parsing, Conceptual

Graphs.

iC 2015 The Authors. Journal Compilation iC 2015 Wiley Periodicals, Inc.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 1

1. INTRODUCTION

The task of reading a sentence and representing it using an ontology model is

called semantic parsing (Popescu et al., 2003) a process which uses semantics in

order to translate text to a knowledge representation structure. This process is nor-

mally algorithmic, based upon heuristics, statistics or other rules (Tang and Mooney,

2001; Shi and Mihalcea, 2005; Wong and Mooney, 2006), or in more recent re-

search, relies on Deep learning (Andor et al., 2016; Weiss et al., 2015; Zhang and

McDonald, 2012) . Such a process might simulate the mechanism through which we

acquire knowledge and information (Vlachos and Clark, 2014; Vlachos, 2012). A

cognitive agent simulates the functions which enable humans to perform semantic

parsing, rather than implementing semantic parsing as a machine-oriented mecha-

nism. Therefore it is sound to presume that a cognitive agent capable of performing

such a function with relative ease, would be one step closer to becoming able to

autonomously learn indefinitely.

Hence, a major target for an intelligent cognitive agent is the ability to learn

how to represent knowledge from extracted information, and in this use-case, from

raw text (Craven et al., 1999). The criteria, as set by (Lawniczak and Di Stefano,

2010) are perception, reasoning with and judgement of information or knowledge,

as well as the most important achievement, the ability to learn new knowledge from

information.

This ability may be allowing for simulative biomimicry, if built upon biologically

inspired AI models. Regardless of the mechanisms used, the goal is the same: project

2 COMPUTATIONAL INTELLIGENCE

the input text and symbols onto a knowledge representation (KR) structure, which

correctly describes all currently known semiotic information about that input. Doing

so can involve the usage of semantics, statistics, annotated meta-data related to

grammatical properties, ontologies, and many other characteristics and attributes.

Hereinafter, we describe and analyse an agent which combines different AI mod-

els, in order to achieve the goal of learning how to correctly represent information

onto conceptual graphs. The goal is to attain semantic parsing, by teaching the agent

how to perform such a task. The algorithms involved in performing semantic parsing

are not based on any prior knowledge. Instead, the agent first learns by examples and

observation, then self-analyses the learnt material, and is finally tested on unknown

material.

The work described hereinafter addresses some of Bach’s Synthetic Intelligence

requirements (Bach, 2009), e.g., perception, experience, cognition and emotion (via

reinforcement) and Haikonen’s (Haikonen, 2012, 2009) cognitive intelligence topics

such as meaning and representation and their relation to information, association and

memory, and a rudimentary form of reasoning (discussed in Section 2.1).

The unique novelty in our approach is that we avoid previously used rigid ap-

proaches, rule-based models, heuristics and templates, (Tang and Mooney, 2001; Shi

and Mihalcea, 2005; Pradhan et al., 2004; Zhong et al., 2011; Poon and Domingos,

2009) which albeit performing well, are severely limited to the domains, languages,

or even to the input size. On the contrary, we describe, evaluate and provide evidence

that a cognitive agent based upon machine learning models, can provide robust

and adaptive semantic parsing, by learning by example, regardless of the domain.

Moreover, that a cognitive agent can learn indefinitely, by cascading reinforcement

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 3

learning with artificial neural sub-controllers, data-mining, semantics and statistics.

We have designed it in a manner which enables it to learn from examples the user

provides, and self-organises and controls its internal experience and knowledge, in

order to enable accurate and continuous learning, whilst being able to be retrained

and updated. This agent starts in a blank/tabula rasa state. When trained by a user, it

is able to recreate the semantic parsing process, thus performing the task in the same

manner as the trainer.

Moreover, previous research in semantic parsing and other related fields rely

on feature vectors, and not on the actual symbols (tokens,words) (Clarke, 2015;

Grefenstette et al., 2014; Pradhan et al., 2004). This is due to the computational

power required, memory space needed to process individual tokens and the increase

in execution time, when working with raw information. Thus the norm for the past

decade or so, has been to work on text using feature vectors and vector spaces,

rather than directly on the actual text, with only a handful exceptions where a direct

representations was used (Liang and Potts, 2015; Wong and Mooney, 2006).

Current more recent research in semantic parsing, using Deep Learning and other

types of AI models, still rely on feature vectors (Grefenstette et al., 2014; Clarke,

2015). These researches vary different models, architectures, designs and algorithms

on the aforementioned vectors. On the other hand, non-vector related research uses

statistical approaches (Wong and Mooney, 2006) and relies on word-alignment and

other well-formatted rules. Reinforcement learning and imitation-based approaches

(Vlachos and Clark, 2014; Andreas et al., 2013; Vlachos, 2012) use machine learning

as an action-selection mechanism dealing with features, rather than as a spatial-

temporal mechanism learning the knowledge representation structure.

4 COMPUTATIONAL INTELLIGENCE

Recent state-of-the-art made significant breakthrough in accuracy, attributed to

deep learning. The most recent breakthrough is from Google (Andor et al., 2016;

Weiss et al., 2015; Zhang and McDonald, 2012) and the use of TensorFlow (Abadi

et al., 2016) library as used by SyntaxNet (Petrov, 2016). Google relied mostly

on POS tagging (the Parsey McParseface POS tagger) rather than Semantics, yet

achieved the best F1 scores to date (F1 results range from 94.44% on news data,

95.40% on question-answers and 90.17% on web data).

Other state-of-the-art is the research and platform by the spaCy (Honnibal and

Johnson, 2015) start-up in Germany. Current software, tools and platforms consid-

ered state-of-the-art are shown in Table 1 (State of the Art NLU Software Tools);

for a full list and analysis Choi et al (Choi et al., 2015) have gauged performance,

accuracy, speed, etc., yet some platforms have been renamed, and some appear to be

un-maintained or deprecated since then.

[Table 1 about here.]

Our main contribution is thus that we provide a radical new approach to seman-

tic parsing, where the agent learns a whole temporal-spatial sequence on how to

construct knowledge representations of the input.

In the above context, the agent treats the construction of the CG as a tempo-

ral process, e.g., a Shift-Reduce operation (Sagae, 2009; Sagae and Lavie, 2006;

Shieber, 1983) whilst the spatial aspect of the processing focuses on operations

on the graph being constructed. Such an approach, to the best of our knowledge,

has never been attempted; this process combines graph operations as an action to a

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 5

Markovian state represented by the graph itself. As such, a symbolic KR (the CG) is

being learnt by a learning mechanism.

Prior research in using conceptual graphs for semantic parsing, compared to

Meaning Representation Languages (MRL) or other KR schemes, is sparse and

inconclusive (Zhong et al., 2011; Montes-y Gómez et al., 2002). Moreover, the latter

research relies solely on heuristics, or semi-supervised learning. Instead, we support

the notion that heuristics should be replaced by machine learning, to eliminate the

necessity of prior knowledge of the domain and hard-coded rules or templates. How-

ever, the notion of using CG to extract knowledge, as well as reason with it (Kamsu-

Foguem and Chapurlat, 2006) isn’t new. Manipulation of knowledge graphs in real-

life applications has been researched in the past (Ruiz et al., 2014; Kamsu-Foguem

et al., 2013), and as such it stands to reason that usage of CG in cognitive agents

could enable better human-agent interaction, especially for knowledge transference.

The Machine-Learning based cognitive agent is further compared with the most

representative and successful heuristic and semi-supervised state of the art solutions,

to clarify and illustrate its strengths and weaknesses.

2. LEARNING MODEL

2.1. Theoretical Model

Figure 1 (Agent Schema) demonstrates a high level of the components of the

agent1, and how they interact with each-other (Gkiokas, 2016).

[Figure 1 about here.]

1Please note that not all the components shown in Figure 1 are being used in this version of the agent.

6 COMPUTATIONAL INTELLIGENCE

The agent uses KR to store knowledge acquired from raw information. The KR

model that does the actual representation of knowledge is the conceptual graph (CG)

model of Sowa (1999). Conceptual graphs are finite connected bipartite graphs with

entities partitioned as either concepts or relations (Chein and Mugnier, 2008). Con-

ceptual graphs were chosen because they are simplistic and minimal models without

an excess of meta-data. Other advantages are the simplification of the representation

and relations through labelled edges, their expressiveness, which is similar to natural

language, and their accuracy and highly structural information (Rasli et al., 2014;

Zhong et al., 2011). Furthermore, other researchers (Croitoru et al., 2007) state

that conceptual graphs are intuitive and semantically sound means of knowledge

representation. Most importantly, conceptual graphs have been demonstrated to offer

a computationally tractable and sound way of representing text and natural language

(Montes-y Gómez et al., 2002). Within the cognitive agent’s memory, we describe a

conceptual graph Gt = (Vt, Et) at a moment in time t, as shown in (1), with nodes

V = (Ct, Rt) being either concepts or relations, and using edges (E) between node

classes, to form a bipartite graph. This model is implemented as an adjacency list

for graph Gt which also describes a state st.

Gt = (Ct, Rt, Et). (1)

We have used an adjacency list, as it has O(|V | + |E|) storage complexity,

O(1) vertex and edge addition, and O(|V |) query complexity (Cormen et al., 2001).

Using an adjacency matrix would offer faster queries, but it has larger memory

requirements and vertex addition complexity. Thus, due to the fact that the agent

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 7

stores thousands of conceptual graphs in its memory, we chose the adjacency list, as

it has the fastest addition and most conservative memory requirements. Indeed, these

operations occur very frequently when learning graphs, since the agent manipulates

an empty graph into a populated one, by adding nodes and edges. We do not remove

vertexes or edges, and thus an incidence list would not be beneficial, as neither would

be an incidence matrix (Coxeter, 1973).

In order to learn the construction of a conceptual graph, the cognitive agent uses

reinforcement learning (Sutton and Barto, 1998) a neural-temporal learning mech-

anism, which we have implemented using the Q-Learning algorithm (Sutton and

Barto, 1998, equation 6.6) - one of the most frequently used algorithms due to its per-

formance. We chose Reinforcement Learning because it is a biologically plausible

mathematical representation of behaviouristic Psychology learning, by simulating

how agents learn by associating a cumulative reward with their actions (Watkins,

1989; Sutton, 1984; Galef Jr, 1988). Furthermore, using Reinforcement Learning

allows us to represent and handle symbolic representations (e.g., the graphs) directly

on a ML algorithm in a Markovian sense (Howard, 1970; Bellman, 1957).

At the highest and most abstract level, the agent observes examples provided by

the user, decomposes them, learns by their decomposition, and then becomes able

to (a) recreate them, or (b) use them to approximate how to perform highly similar

tasks. Figure 2 (Agent Observation and Recreation) demonstrates that high level

approach in simplistic terms.

[Figure 2 about here.]

The Q-learning algorithm is shown in formula (2) where Q(st, at) denotes the

8 COMPUTATIONAL INTELLIGENCE

policy value of taking action at in state st. The reward R is obtained only at the

terminal state and is back-propagated to the previous states. The constant α is the

learning rate, and constant γ is the discount factor of the next policy’s value; both

constants α and γ have a range between 0 and 1.

[Figure 3 about here.]

The rewarding cycle, as shown in Figure 3 (Agent Reward), is not continuous

and takes place once when the agent has finished performing the task. In this case

the environment is in fact the Conceptual Graph being manipulated, and the reward

is associated to a specific input and output.

A low learning rate tends to ignore updates, whereas a high learning rate con-

siders the most recent updates. Similarly, a low discount rate makes the algorithm

opportunistic with respect to the most recent rewards, whereas a conservative-long

term approach requires a high discount value (Even-Dar and Mansour, 2004). After

trial and error and through empirical testing we decided to use α = 0.7 and γ = 0.3,

the reason being that due to the way the cognitive agent learns, by being presented

examples only once, we prefer fast learning of the most recent reward. Because the

same episode will not be re-iterated multiple times (as it is the case with probabilistic

Q-learning, or when re-experiencing same or similar episodes), faster learning im-

plies less time spent on training, a notion similarly described in One-Shot Imitation

learning (Duan et al., 2017) for Robotics.

Q(st, at) = Q(st, at) + α[R(t) + γ ·max
a
Q(st+1, a)−Q(st, at)]. (2)

This implementation enables a unique approach to KR construction: machine learn-

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 9

ing can be used directly on symbolic information and the KR byproduct, as the

state st denotes a KR structure at a moment in time: the conceptual graph Gt of

that instance. Using the Markov Decision Process (MDP) employed by Q-Learning

to describe the process (named an episode) of creating a conceptual graph, is also

the basis upon which the agent learns how to perform the projection operation of

information onto KR. Thus, the agent processes the actual text, structures and labels,

rather than the features of the input. This approach affects what the agent is learning;

not features or meta-data from vectorised information or vector space models, but the

actual representation, as it is being created from the input information.

The agent aims to accumulate background knowledge (conceptual graphs) and

experience (policies - episodes) when trained, in order to maximise its accuracy and

overall performance. It is employing classification methods (see Sections 2.3.2, 2.3.3

and 2.3.4), which are combined as sub-controllers of the main reinforcement learning

algorithm. The forefathers of reinforcement learning (Sutton and Barto, 1998) men-

tioned that an ensemble of learning and other function approximation methods are

necessary, in order to be able to reuse policies. The states and actions, the building

blocks of reinforcement learning, are learnt via Q policies. By learning the correct

policies about the projection of text onto conceptual graphs, the approximation of

states and actions enables reusability of previous experiences (episodic and non-

episodic), when presented with new input (see Section 6).

In reinforcement learning an episode ~e t is a sequence of states st joined together

by their actions at, where t is a time-step that describes a moment in time, thus

creating a MDP. Each episode is made up of a variable number of states and has a

root st=1 and terminal state st=n (see definition 3).

10 COMPUTATIONAL INTELLIGENCE

~e t : {(st=1, at=1), (st=2, at=2), · · · , (st=n, at=n)}. (3)

Each state describes the transition and projection of symbolic information (text)

towards a conceptual graph. The state is described here in a Markovian manner, by

a set of tokenised words Tt, and the current conceptual graph Gt, for the time-step t

(see definition 4).

st :

{
Tt : {w1, w2, · · · , wn}

Gt : {Ct, Rt, Et}

}
. (4)

As the agent projects information (e.g., tokens, words, symbols) as nodes onto

the graph Gt, these tokens are removed from the next state’s st+1 token set Tt+1.

Thus, the token set is a stack from which words are removed as the episode pro-

gresses, and the graph is populated with nodes, it is in fact a shift-reduce (Shieber,

1983) operation. When the token set Tt becomes empty, the agent has to connect the

nodes of graphGt, by using edges. Once the agent is certain that no more edges must

be created, it terminates the episode, by producing a terminal state. The conceptual

graph of that terminal state is the final product of the projection: the representation

of the information given as input.

An action at can be the decision to convert a token to a concept or relation, as

conceptual graphs are bipartite graphs. The decision to take action at is what creates

new states, the transitional link from st to st+1 in the episode ~e t. In addition to

creating nodes, an action can also be the decision to create edges between concepts

and relations, and thus creating a connected conceptual graph.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 11

[Figure 4 about here.]

The Figure 4 shows how Shift-Reduce is used in the MDP to populate the graph

with nodes, and then how it is used to create edges between the nodes. This process is

deterministic (and therefore we use the deterministic version of Q-Learning) because

the agent can determine the result of its action at any given moment. Furthermore,

the MDP has no hidden states or partial hidden states, albeit the semiotics of a state

are not assumed to be all known.

The actions are created by the agent, and can be generated by random, semantic,

probabilistic algorithms, or classified via neural networks, as those are the models

and algorithms most often used in recent related research (Choi et al., 2015; Andor

et al., 2016; Weiss et al., 2015; Clarke, 2015; Zhang and McDonald, 2012; Grefen-

stette et al., 2014; Vlachos and Clark, 2014; Andreas et al., 2013; Vlachos, 2012;

Zhong et al., 2011; Poon and Domingos, 2009; Shi and Mihalcea, 2005; Pradhan

et al., 2004; Tang and Mooney, 2001). Each of the described approaches, models

and algorithms is described below, and evaluated in Section 6.

In the literature (Sutton and Barto, 1998) actions are created and then evaluated

via a fitness function. As actions directly affect the next state and therefore the

produced outcome, a good action generation mechanism is crucial in a cognitive

agent and it is highly beneficial to avoid searching; instead it is preferred to approxi-

mate new actions based on previous ones. We examine all individual action creation

mechanisms in Sections 2.3.1, 2.3.2, 2.3.3 and 2.3.4.

Cascading various algorithms was done empirically, as well as by relying on

previous literature; we tried various combinations, and every time recorded their

12 COMPUTATIONAL INTELLIGENCE

overall accuracy. The methods tested (and described hereinafter) were based on

previous research using Heuristics, Probabilities, Semantics and Machine Learning.

During training, the graph G and the associated input sentence are given as a

paradigm or example, which the agent observes and analyses, in order to infer the

episode and learn from it. Once the agent has recreated an episode for that graph, it

presumes that the example is correct, and thus reinforces it with a positive reward,

hence reinforcing the episode that created that graph.

As part of the training process (see section 3.1), a decomposition algorithm

disassembles an existing graph G into an episode ~e t, and its corresponding states

and actions. The graph is part of the training data, and has already been created

by a human user as the example from which to learn. The actions are inferred by

observing the graph changes between states: word to node conversion and graph

edge creation. The decomposition algorithm is a naive heuristic, but is required in

order to infer the associated states and actions; its output is a pair of st, at, part of

the episode used to train the agent. During testing, the agent may be presented with

known, unknown, or partially known input. When the agent is given known input, it

stays on-Policy and simply outputs what Q-Learning dictates (see formula 2). For

partially known input, the classification mechanisms are responsible for creating

new actions by reusing previous episodes. The classification mechanisms depend on

reusing previous Q(st, at) policies, either directly or indirectly. In the event where

unknown input is given, the agent has to explore and thus discover new policies, by

attempting to approximate known states and actions.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 13

2.2. Input pre-processing

When the agent is given a sentence as input, that input is tokenised, using stan-

dard white-space tokenizing, and certain English particles are removed (e.g.: ”a”,

”an”, ”the”), as well as common symbols such as commas, question-marks, and

full-stops. This is done in order to offer a ’cleaner’ input to the agent, as it is rec-

ommended by (Jurafsky and Martin, 2000). Furthermore, a part-of-speech processor

obtains the tags for each tokenised word in the sentence (Tsuruoka et al., 2011). In

addition to the aforementioned pre-processing, a Vector Space Model (Turney et al.,

2010) is built as a sparse matrix, and indexes all input sentences, so that attributional

semantics can be used, to find input sentences similar to the ones stored in the agent’s

memory. However, no rules or templates are applied, the input is not pre-annotated

with semantics, ontologies, entities, or in any other way.

2.3. Action Decision

The importance of correct actions needs to be emphasised: incorrect actions lead

to incorrect states, which eventually create incorrect conceptual graphs. The accu-

racy of the terminal state and its corresponding conceptual graph is what dictates the

overall performance of the agent. The agent learns how to create the actual represen-

tation, by learning to perform the correct sequence of actions for each corresponding

state. Thus it does not classify or categorise a conceptual graph; it creates correct or

incorrect terminal graphs. It is those graphs we used to reward the agent, and also

to infer how accurate it is, in comparison to the expected graph output. We discuss

accuracy metrics in Section 6.1, using Sørensen coefficient (12) and Jaccard index

(13).

14 COMPUTATIONAL INTELLIGENCE

The cognitive agent has a variety of action creation mechanisms at its disposal,

and some are used in a cascading or preferential manner (meaning, one algorithm

takes precedence over another), whereas other action creation mechanisms (i.e., neu-

ral networks) are used as standalone. We have implemented and evaluated various

action-selection mechanisms from previous research, ranging from Relational Se-

mantics (Fellbaum, 1998) to a statistical approach, a naive Bayesian and others. The

action-decision mechanisms are used only when testing the agent; during training,

the actions are inferred from the observed examples.

An explanation of each algorithm follows. We use a variety, not only to test

which works better, but to compare to other research, which relies on similar algo-

rithms.

2.3.1. Random Action. A random action is based upon a uniform random distri-

bution, and utilises the Mersenne twister (Matsumoto and Nishimura, 1998) pseudo-

random generator (PRNG). The Mersenne twister is the most widely used PRNG and

it offers a fast and secure implementation for random integers. In the action-decision

deployment scenario, it randomly decides if a word is a concept or a relation, and if

two nodes should be connected by an edge.

2.3.2. Semantic Action. A semantic action uses WordNet (Fellbaum, 1998) to

obtain hypernyms, hyponyms and synonyms as graphs, which it then traverses, in

order to detect if two queried words are semantically connected, and what their se-

mantic similarity is. We chose WordNet, as it is the only dictionary-based framework

widely used for discovering semantic relations; it has also been evaluated and tested

for more than a decade, especially for English, which is the language of our input

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 15

sentences. Other languages would require both a WordNet database to be used, and

a POS tagger capable of processing that language.

Quantifying the semantic similarity, denoted by δ[n,n′], is done using the formula

(5), as below.

δ[n,n′] = wsi

k=layers(si)∑
k=0

t[n,n′]

(
1 + β

(
d[n,n′]

))
. (5)

The nodes n and n’ represent words, tokens or labels, which become the queries

to WordNet. When a graph (representing a hyponym, hypernym or synonym tree)

is processed, the distance travelled is stored in t[n,n′], whereas the traversal direction

d[n,n′] (forwards or backwards) is alleviated by the constant β (empirically set to 0.1).

The min-max normalised sense weightwsi (set by WordNet) biases towards the most

frequent senses, which always appear first, according to the way they are sorted in

WordNet dictionaries, from the most frequent to the least frequent. By using this

semantic similarity, the agent may decide to recreate a known action at, which was

operating on node n, because it is very similar to node n’, for which a policyQ(st, at)

already exists.

2.3.3. Probabilistic Action. The cognitive agent, after being trained with exam-

ples, analyses its episodic memory and all policies acquired. By data mining its

own episodic memory statistics, it acquires frequencies of events and observations,

such as the rate of token to node conversion, or edges existing between nodes.

By obtaining statistics from observing the frequency of events, the agent is able to

calculate empirical binomial probabilities. Probabilities are calculated by querying

the probability of an edge existing for a node tuple, denoted as P (∃(e[n,n′])) the

frequency of events, when an edge from n to n’ has been observed to exist (see

16 COMPUTATIONAL INTELLIGENCE

equation 6). The opposite also holds true: 6 ∃(e[n,n′]) denotes the fact that such an

edge has not been observed to exist but could have been created due to the presence

of n and n′. Thus, formula (6) describes the empirical probability of an edge existing,

with respect to the total observations for that edge and the nodes that it can connect.

P (∃(e[n,n′])) =

∑(
∃(e[n,n′])

)∑(
∃(e[n,n′])

)
+
∑(
6 ∃(e[n,n′])

) . (6)

When computing edge probabilities, we may use either the token value (the label)

or the POS Tag of the token (its syntactic attribute). A combinatorial probability may

also be used, in the event that both edge probabilities are known. All probabilities

recorded have a range between 0 and 1, and are recorded for edges and nodes. Token

to node probability (equation 7) is recorded for both tokens and POS tags, i.e.,

measuring how frequently a specific tag (or token/word) is classified as a concept

or relation.

P (Concept) =
#ofEvents(t = Concept)

#ofObservations(t)
. (7)

In the above formula (7), the number of events where a token t was being clas-

sified as a concept, are divided by the number of total observations made about t.

Exactly the same rule applies for calculating relation probabilities. In this formula, t

can be either a token, or a token’s part-of-speech tag. Token distance is a probability

value based on the observation of distance events (e.g., how far were two tokens

when connected as nodes).

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 17

2.3.4. Neural Actions. Two multi-layer feed forward artificial neural networks

(ANN) are created and trained after the data-mining phase. One network is trained

using POS Tags and token distance, the other is trained using POS tags, tokens and

token distance. The reason for doing this is that P (token) is not always available,

whereas P (POS) is always available (as computed by formula (7)). After being

trained, and after performing data-mining on the action/policy observations, the

probability values can be calculated for every edge observed. We do not train the

ANN on token-to-node action selection, because probabilistic actions perform a

highly accurate node recognition (as further discussed in section 6).

The probability values for edges (see equation (6)) and the scaled and normalised

token distance between the tokens within the input sentence, are the actual ANN in-

put data. The architecture of the networks has been optimised by using the cascading

algorithm (Nissen, 2003), and was further optimised, by using early stopping (Yao

et al., 2007) through cross validation of the mean-square error. Optimisation was

necessary as the problem of over-fitting became an issue, mostly due to the usage of

noise in large training sets. Empirical hyper-parameter optimisation, albeit a topic

on its own accord, directly affects the agent’s output and as such we examined

how different parameters and approaches could be used to yield the best possible

neural-based action selection. Furthermore, we used training data sub-sampling and

random shuffling, in order to ensure correct representational efficiency. The selection

of the neural network parameters (hidden neurons) is a big challenge, with over 20

years of research in the area (Sheela and Deepa, 2013; Hagan et al., 1996), and no

definite answer. Here, we used an anecdotal formula (Stackexchange, 2015) which

was derived from (Sheela and Deepa, 2013), in order to infer a value for hidden

18 COMPUTATIONAL INTELLIGENCE

neurons (see eq. 8), where Nh is the number of hidden neurons needed, Ni is the

number of input neurons, and No is the number of output neurons, whilst Ns is

the number of training samples. The constant alpha is normally said to be a value

between 5 and 10, but through trial and error we established that a value of 12 was

more suitable for our intents and purposes, as it avoided overfitting.

Nh =
Ns

alpha ∗ (Ni +No)
. (8)

Neural action controllers can be said to act as filters or classifiers, which decide

if an edge should be created or not. They act as sub-controllers, processing the

extracted probabilities from the data-mining done by the agent, when iterating its

episodic memory.

2.4. State Classification

Similar states are classified using only the original input sentence. This is per-

formed via the use of a Vector Space Model (Turney et al., 2010), which has the

ability to find very similar input in the agent’s memory. This model allows the agent

to assume that highly similar input may have similar output graphs. Classification

was done by training an ANN to take into account the similarity between states,

using the min-max normalised VSM similarity from equation (9) as the input value

which affects the action-decision mechanism. In the equation, m is the vector space,

and n denotes the vectorised input sentence, where pn, tm are the matrix coefficient

elements respective to a sentence p and word t.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 19

Am,n =

p1t1 p1t2 p1t3 . . . p1tm

p2t1 p2t2 p2t3 . . . p2tm

p3t1 p3t2 p3t3 . . . p3tm

...
...

...

pnt1 pnt2 pnt3 . . . pntm

. (9)

3. AGENT ALGORITHMS

3.1. Training

During training, the agent learns how to project input onto conceptual graphs.

An inference algorithm breaks down conceptual graphs to their nodes and edges,

and then infers node actions, by observing which words were converted to what

node types; it then finds the edges which connected those nodes, thus inferring

edge actions. The algorithm (1) is inspired by programming by example (Lieberman,

2001); in essence, it is neuro-dynamic programming (Bertsekas and Tsitsiklis, 1995),

which creates an MDP, in the form of an episode ~e t.

The training is done in batches, and thus results in many episodes and their

corresponding conceptual graphs, populating the agent’s memory. Each batch size

depends upon the actual data-set used to train the agent (see Section 4). Every time

the agent is trained, it is done without it having any a-priori knowledge about the

domain or the data-set, with the only exception being the POS tag annotation by

laPOS (Tsuruoka et al., 2011) (see Sections 2.3.3 and 2.3.4).

Every episode acquired during training is positively rewarded, as the agent as-

sumes it is correct; an inherent property of learning by example, which has many ad-

20 COMPUTATIONAL INTELLIGENCE

Algorithm 1 Batch Training Loop

tuples = load(trainset)
for tuple[graph, text] ∈ tuples do

episode = array[st, at]
for word ∈ tuple.text do

at = findNodeInGraph(word, paradigm.graph)
episode.add(st, at)
gt = st
addNode(gt, at)
st+1 = gt
Remove(st+1, word)

for edge ∈ tuple.graph do
at = findEdgeInGraph(gt)
if st¬terminal then

episode.add(st, at)
gt = st
addEdge(gt, at)
st+1 = gt

UpdatePolicies(episode, 1.0)

vantages (Nehaniv and Dautenhahn, 2007) but also some pitfalls. Admittedly some

limitations do exist: since this agent learns from the user, should the user provide

erroneous examples, the agent will simply learn them. Ambiguity and contradictory

paradigms also create dissonance within the agent’s memory, and in some cases

can severely hinder the agent’s performance. A phenomenon, which, as known, is

inherent from the imitative ability of animals and humans. Dissonance is filtered via

statistics, but this approach also affects special cases such as patterns where general

probabilities do not apply.

Furthermore, because the focus is Natural Language (NL), a common issue often

encountered is that of ambiguity (Gorrell, 2006), which is related to both the syntac-

tic and semantic properties of NL. That ambiguity can (and often does) create noise

or erroneous and contradictory training samples, which propagate in the agent’s

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 21

memory. Because the agent does not attribute importance to the information source,

or the frequency that a specific sample may appear, e.g., all samples are given equal

policy weights in the memory, hence an exception to a rule, i.e., an outlier might

influence the overall agent memory. A scoring or bias system, could potentially

address this issue; we’ve used classical probabilities in order to filter out the outliers,

but admittedly more sophisticated approaches such as feature selection and detection

may increase accuracy. Perhaps, most interesting of all, judgement or scoring of the

training source (e.g., person or resource) could provide a more robust agent, but the

complexity of such a system would increase, and would have to be unsupervised

since the agent would have to be capable of adjusting policies in its memory.

3.2. Data-Mining

The agent data-mines (Algorithm 2) its own episodic memory after being trained,

in order to deduce and calculate probability values, as described in section 2.3.3, and

the agent updates look-up tables for those probability values. The modus operandi is

straightforward: the agent will create all possible permutations of tokens into nodes,

and then observe which ones actually exist in a given episode, as actions in the known

Q(st, at) policies. Similarly, it creates edge permutations for existing nodes within

an episode’s graph, and then observes which ones did exist. This creates a mapping

of the possible action search space for a given episode input, which the agent then

uses to update the probability values for tokens, POS Tags, and token distances.

The actual size and values recorded depend on the data-set used to train the agent.

Hence, larger data-sets create larger and potentially more accurate probability look-

up tables. By taking this approach, we manage to create statistical data (as shown in

22 COMPUTATIONAL INTELLIGENCE

6.5), which is then used either by the Probability Action mechanism (section 2.3.3),

or the artificial neural network action mechanism (section 2.3.4).

Algorithm 2 Data-Mining edges
for episode ∈ memory do

sterminal = episode.end()
gt = sterminal

for relation ∈ gt do
for concept ∈ gt do

action = Edge(relation, concept)
if action ∈ episode then

Record(PR(relation, concept, T rue)
else

Record(PR(relation, concept, False)

for concept ∈ gt do
for relation ∈ gt do

action = Edge(relation, concept)
if action ∈ episode then

Record(PR(relation, concept, T rue)
else

Record(PR(relation, concept, False)

3.3. Testing

Testing is done after the agent has been trained, and it has data-mined its episodic

memory space. Thus, testing assumes that the agent is trained on some subset that

is representational of the information given when being tested, and that some kind

of action-decision mechanism exists (e.g., neural, random, semantic, etc). If the pro-

duced conceptual graph of the terminal state is equivalent (identical or isomorphic)

to the one associated with the tuple’s input, then the agent self-rewards its decisions

positively, else the episode is regarded as erroneous and is therefore rewarded nega-

tively (see Section 6 for results).

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 23

Algorithm 3 Testing loop

policies = load(Memory)
examples = load(Paradigms)
for test ∈ examples do

graph = test.graph
input = test.text
st = new(input)
if st 6∈ policies then

episode = new(empty)
while at = Decide(st) do

st = infer(input, at)
episode.add(st, at)
st+1 = calculateNext(st, at)
st = st+1

terminal = st
if terminal.graph ≡ graph then

UpdatePolicies(episode, 1.0)
elseIf terminal.graph 6≡ graph

UpdatePolicies(episode,−1.0)
else

while ∃
(
Q(st, at)

)
∧ st¬Terminal do

Online(Q(st, at))

4. CONCEPTUAL GRAPH DATA-SETS

The domain data used in this paper is taken from health related news articles,

scientific discoveries and lifestyle articles, and has been published on GitHub2. The

reason for our selection is that, whilst allowing for reasonable complexity (em-

pirically observed during construction and annotation of the data-set), in terms of

unknown words and more complex graph structures, such articles tend at the same

time to be quite straightforward and factual, containing state-of-fact or discovery,

thereby being less ambiguous in their description. Using factual or statement ori-

ented sentences isn’t a requirement, but evidence suggests that this type of text input

2https://github.com/alexge233/conceptual_graph_set

https://github.com/alexge233/conceptual_graph_set

24 COMPUTATIONAL INTELLIGENCE

is more structured and less ambiguous, for example Google’s Syntaxnet (Andor

et al., 2016; Weiss et al., 2015) which provided the best to date F1 scores of 94.44%

on news data and 95.40% on question-answer data, but only 90.17% on Web data.

This type of performance is consistent across various studies (Andor et al., 2016;

Weiss et al., 2015; Zhang et al., 2014; Martins et al., 2013). Our intention therefore

was to test with varying degrees of sentence complexity (small, medium and large

sentences) without dealing with Web-related data.

The articles were collected from a variety of on-line resources (RSS feeds) from

BBC, Sky News, USA Today, Science Daily and Knox News. Both the title and actual

content of the RSS feeds were used to create the data-set. The titles were used

to create smaller graphs, whereas the article contents were used to expand on the

same topic and create larger and more complex graphs. The content is also further

partitioned into many graphs, by using full-stops as the delimiter. In total, the data-

set has 1199 entries, and each entry is a tuple: a text sentence and its corresponding

conceptual graph. The dataset size was limited by the fact that it had to be generated

manually. However, the total data-set size was deemed fit for these experiments, as

other datasets in use were of similar or smaller size (see Table 2 - Commonly used

Data-sets).

[Table 2 about here.]

The data-set has a variety of entries: some are short sentences (and thereby small

graphs) and some are long and complex. All subsets were created randomly in the

same fashion, by shuffling tuple entries and then randomly choosing the ones with a

certain average sentence length. Each subset was further partitioned into a training

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 25

set and a testing set. The larger subsets also contain entries from the smaller subsets,

but the agent is never tested with different sets in the same experiment, to avoid

encountering these overlapping entries. The average length of a sentence increases

from set to set, from 5 words per input up to 30 words per input. Figure 5 (Graph

Example) shows an example of a simple CG.

[Figure 5 about here.]

The most commonly used data-sets for testing similar tasks in the literature (e.g.,

semantic parsing) are displayed in Table 2. As can be seen, only two sets are larger

than our set. However, these sets cannot be directly compared, for reasons as follows.

ATIS3 (Hemphill et al., 1990), which is significantly larger, having evolved over

the course of decades, offers transcribed utterances dissimilar to scientific news

and feeds. It aims to provide a question-answer scenario, that is not applicable to

our cognitive agent scenario. Similarly, the Penn-Treebank 3 (Marcus et al., 1993)

contains Wall Street Journal stories, with syntactic annotation. They are not appro-

priate for our agent, as they contain abbreviations, US-English, stock names and

symbols, etc. The RoboCup data-set (Chen and Mooney, 2008; David L. Chen, 2010)

organises the data in Meaning Representation Language (MRL) logical form tuples,

containing phrases used in the RoboCup soccer championship, quite dissimilar from

our domain. The BioNLP11ST (by the BioNL Shared Task organisation) is a data-

set focusing on co-reference, entity relations and gene renaming. The last and largest

difference is that all aforementioned data-sets use either MRL, logical formulae, or

other similar KR structures. With the exception of (Campbell and Musen, 1992) who

proposed to create a data-set for clinical data, to the best of our knowledge, no other

26 COMPUTATIONAL INTELLIGENCE

conceptual graph data-set currently exists. Still, even with these differences, the

comparison to the data-sets in Table 2 serves to demonstrate that our data-set size is

comparable with other datasets in current use, however, the average word length per

sentence is smaller than what is often used. The reason for that is mostly related to

practicality; the CG dataset was created for the purpose of testing this agent, and as

such the effect of large and complex sentences is already known and established from

previous research (Choi et al., 2015). What we are mostly interesting is not gauging

how well the agent compares to other research, but if it performs its intended tasks,

which are however comparable to other research. As seen later in Section 6, the agent

does stay on par with other related NL research.

[Figure 6 about here.]

However it is important to note that our data-set partitioning is biased towards

smaller average sentences, with the overall average size being 8 words per sentence,

as shown in Figure 6 (Dataset Characteristics). The variation observed in accuracy

(later discussed in Section 6), is mostly attributed to that wide range of changing

sub-set datasets being tested.

We hypothesise that whilst the complexity of the tuple entries is not entirely

dependent upon the input word count, it is a good indicator, as the larger the input

in words/tokens, the larger the search space becomes for the agent, and hence the

solution to the input is more difficult. Other simple complexity measures include

the node to edge ratio, the average path length of a graph, all indicators of the

structural complexity of a graph; we did not examine more complex graph measures

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 27

such as betweenness, radius, closeness, clusterization (Wright, 1977; Barooah and

Hespanha, 2007) as those were outside of the scope of our work.

The average VSM (Vector Space Model) similarity is yet another metric, which

indicates how attributionally similar is the topmost similar episode in the memory

of the agent, to the one being produced (Turney et al., 2010). We average the top-

most VSM similarity for all inputs, in order to establish if the agent has already

processed some input which is similar. The implication is that subsets with higher

VSM similarity would be easier for the agent to evaluate, as its acquired policies

during training would most likely be applicable to the given input when testing.

5. EXPERIMENTAL METHODOLOGY

Experimentation is done by first training the cognitive agent, using one of the

training subsets, and then testing it with the corresponding testing subset, following

the principles of Simulated Experiments (Winsberg, 2003). This approach ensures

that tuple entries in the training set will never be present in the testing set. Each

experiment was done using a random subset of the dataset, and the memory of the

agent is deleted across different experiments, so that we can average the accuracy and

account for randomness and noise. The experimental methodology remains constant

for all experiments, and a variety of meta-data is logged, in order to infer accuracy,

performance, and monitor algorithm usage. Moreover, instead of training the agent

on the same training-set, we use random samples of the training set, which are mutu-

ally exclusive. Ensuring consistent performance is done not only by randomising the

training-sets, but also by testing the agent on average 10 times, using each training

28 COMPUTATIONAL INTELLIGENCE

and its respective testing set (Cavazzuti, 2012). This approach known as Randomized

Complete Block Design (Higgins, 2003; Winer et al., 1971) organises in small blocks

of experiments similar input-length sub-sets randomly picked, and proceeds to repeat

each one ten times, and then averages their performance.

5.1. Training

The training methodology is as follows: (i) delete the agent’s previous memory,

(ii) instruct the agent to load the training set, (iii) train the agent, (iv) perform data-

mining, (v) save all memory (policies, probabilities, etc.) on the disk. The training

phase is entirely separated from the testing phase. The agent is trained incrementally,

by observing and analysing one paradigm at a time.

5.2. Testing

The testing methodology is as follows: (i) load its memory (from training), (ii) do

testing phase, (iii) log every produced graph, (iv) log VSM similarity, (v) log graph

node-edge ratio, word input length, and other metrics, (v) log amount of random,

probabilistic, semantic and neural actions. At the end of each testing experiment, a

script is run which extracts certain metrics obtained during execution.

Those metrics are averaged to evaluate: (i) average node similarity, (ii) average

edge similarity, (iii) average graph similarity, (iv) average input length. The total

number of experiments used 12 blocks of random subsets executing each one 10

times.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 29

6. RESULTS

6.1. Overall Agent Performance

Due to the nature of conceptual graphs using sets of relations, concepts and

edges, it is justifiable to treat graph similarity as a problem of set matching. As

our implementation of conceptual graphs uses adjacency lists (see equation (1)) we

have identified and used two different methods to calculate graph similarity: the

Similarity Coefficient (Rijsbergen, 1979) also known as Sørensen index or Dice’s

coefficient (see equation (10)) and the Jaccard Index (Real and Vargas, 1996) or

Jaccard coefficient (see equation (11)), which compute the similarity between two

sets A and B.

S(A ∼ B) =
2 | A ∩B |
| A | + | B |

. (10)

J(A ∼ B) =
| A ∩B |

| A | + | B | − | A ∩B |
. (11)

Both similarity coefficients serve the purpose of measuring how similar the agent’s

output, e.g., a produced graph G is, to the ideal or target output graph G′. The

difference between Sørensen and Jaccard coefficients is that Sørensen ignores the

amount of different items in the set, whereas Jaccard penalises the set difference,

thus resulting in a smaller similarity value if the two sets contain many different

items.

When establishing the agent accuracy, a norm widely used in binary classifica-

tion is the F1 score (Brodersen et al., 2010). However, this score is not directly appli-

cable to our work, due to the fact that the notions of precision and recall (Brodersen

et al., 2010) do not exist in our agent; it isn’t performing direct classification but a

30 COMPUTATIONAL INTELLIGENCE

generation of CG as output. The Jaccard coefficient is a more strict measure which

ideally would be used, however the Dice-Sørensen coefficient has the same form

as the F1 score (Intan et al., 2015, p. 158) and therefore functions as the primary

accuracy quantifier. It is also important to note that similarity is respective to the first

graph in Dice-Sørensen: the formula quantifies only how similar G is to G′ and its

parameters are non-anadrome.

We use the term average graph similarity, referring to the similarity coefficient

of the target output graph and the actual graph for both (10) and (11), a value scaled

and normalised between zero and one. Using a similarity coefficient with concepts,

relations and edges from the graphs G and G′ provides the basis upon which we

have computed the agent’s performance.

For Sørensen coefficient we weighted nodes VG = (C,R) of both classes equally

to edges, in order to avoid biasing the final value favourably towards nodes. Equal

importance is thus attributed to all entities of the graph, and hence to all actions of

the agent, due to the fact that agent actions at construct the final graph.

S(G ∼ G′) =
1
2
·
(
S(CG ∼ CG′) + S(RG ∼ RG′)

)
+ S(EG ∼ EG′)

2
. (12)

The Jaccard coefficient is used differently: each set C, R and E uses its size as a

ratio, thus the final value not only penalises different items in sets, but if a set is

larger, then it weighs more in the final score.

J(G ∼ G′) =
| CG | ·J(CG, CG′)+ | RG | ·J(RG, RG′)+ | EG | ·J(EG, EG′)

| CG | + | RG | + | EG |
.

(13)

When two graphs are identical or isomorphic, their graph similarity is 1, in both

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 31

Boolean terms and as a percentile. The opposite also holds true, two graphs which

have no common nodes or edges will have a graph similarity of 0.

Figure 7 shows how Sørensen and Jaccard accuracy for all experiments change,

with respect to different data-sets. As the average sentence length (input) decreases,

the agent becomes much more accurate. As expected, the subset with the smallest

input was able to reproduce most accurately the output, whilst the subsets with

a higher count of words and thus complexity, had significantly lower accuracy.

Sørensen/F1 core and Jaccard have a very narrow distribution curve for the average

accuracy of all experiment subsets. However, we report the average accuracy for the

largest data-set (the one containing the most complex and large input) in Table 3.

[Figure 7 about here.]

The first observation is that the overall accuracy and graph similarity are not

linearly related; in fact quite the contrary appears to take place, where small edge

similarity fluctuations have a disproportionate effect on the graph accuracy. Due to

the fact that node accuracy remains constantly high and above 95% for all exper-

iments, we can only attribute this drop to the decrease in edge accuracy; it is in-

fact the only metric which seems to decrease, as input complexity increases, hence

influencing the graph similarity. The implication of this effect is important, as it

signifies that edge accuracy is what hinders the overall agent accuracy, albeit a small

but noticable decline in node accuracy could also affect edge accuracy.

In order to further examine the effect of node and edge accuracy, we logged the

percentage of node and edge actions (out of the total actions) for every experiment.

We discovered that edge actions were on average 55.61%, whereas node actions

32 COMPUTATIONAL INTELLIGENCE

were 44.39%. This ratio could further augment the negative effect incorrect edges

have on correct output: for example 88.65% of edge similarity could in fact play

a more significant role in the output, when more edge actions than node actions

are performed. Thus the Jaccard index we implemented (shown in equation (13))

weighing edges, appears to have a sharper decline, very similar to that of the edge

similarity decline, whilst node similarity remains highly accurate.

6.2. Complexity and Accuracy

As Figure 7 (Agent accuracy) shows, the agent was able to consistently provide

an F1 Score of 92.78% for the entire data-set (e.g., all sentence input sizes).

Taking into account the fact that the data-sets in the right side of the plot in Figure

(6) have increasing complexity (see Section 4), this indicates that the cognitive agent

manages to stay on par with previous related research (Zhong et al., 2011), and

demonstrates the ability to construct complex conceptual graphs.

In Figure 8 we have used the logged data from our experiments: Sørensen co-

efficient, Jaccard index, graph node-edge ratio, average graph path length and edge

search space. We performed Principal Component Analysis (Wold et al., 1987) (PCA)

on: (a) the similarity coefficients (Sørensen and Jaccard) as Accuracy (PCA), and (b)

the word input length and edge search space as Input Complexity (PCA), thereby

representing the overall similarity with respect to edge search space and word input

changes. In order to plot multiple dimensional data, we have projected the most

significant Eigenvectors on a single (lower) dimension: one dimension for Accuracy

(PCA), and one dimension for graph Input complexity (PCA). Thus the ”complex-

ity” metric is the compressed row of the PCA from the input word length and edge

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 33

search space, and the ”accuracy” metric is the compressed row of the PCA from

the Jaccard and Sørensen data columns. This was done for all experimental results,

as seen in Figure 8, whilst identifying how complexity affects accuracy and agent

performance. In Figure 8, the graph path-size (how ”deep” a graph is), the graph

node-edge ratio |V |
|E| , and the synthetic (PCA) ”complexity” metric are shown, as a

Q-normalised 3D surface. The right plot in Figure 8 shows the 4th dimension as a

colour heatmap, the ”accuracy”, and how graph attributes and complexity relate to

graph accuracy.

[Figure 8 about here.]

The first observation (see Figure 8) is that complexity is directly related to agent

accuracy. Another, less obvious factor that seems to influence agent accuracy is a

small node-edge ratio |V |
|E| , which implies that sparsely connected graphs are harder

to construct, compared to dense or fully connected graphs. An untested hypothesis

which would explain this phenomenon, is that sparse graphs tend to branch in a

variety of different ways, thus making sub-pattern recognition harder. Observing

Figure 8 clearly demonstrates that graphs which are ”column-like”, i.e., have few

branches, are a lot easier to construct. The last important observation is that albeit

graph path-size increases as complexity increases (which is to be expected), it does

not have a detrimental effect on graph construction.

6.3. Data-mining Results

Using Data-Mining to perform probability value extraction via graph permuta-

tions essentially maps the possible actions for a specific input. This approach is not

34 COMPUTATIONAL INTELLIGENCE

a complete mapping of the action search space, but it is not a random sub-sampling

either: it is a mapping of all possible actions related to a specific input. We did

not use boot-strapping, random sub-sampling or other techniques to acquire data for

training the ANN, because smaller training sets were empirically found to generalise

too much, and offer little advantages over simple probabilistic algorithms. Thus, we

arrived to the conclusion that, although a permutation mapping of a large action

space was time-consuming, it warranted more representational probability samples,

due to the fact that data-mining provided considerably larger frequency/probability

samples. Furthermore, the conclusion was further supported by the fact that ANNs

trained with larger training data outperformed every other algorithm, as discussed in

Section 6.4.

[Figure 9 about here.]

We also examined the distribution of the data-mined data after training. Figure 9

depicts the data-mined probability histograms. The first histogram Pr(edge[Token])

shows the probability (see equation (6)) of an edge connecting two tokens, based

on their label, e.g., their token value. It has an unusual distribution, with a mean

x = 0.27 and standard distribution σ = 0.37, evident by the high frequency samples

at the extremes. This is not a sampling error but indicates that most observed events

were either correct, or incorrect, due to edges created using token probabilities.

Because most samples have near-zero probability, the agent learnt which edges to

avoid based on tokens values alone. The middle histogram Pr(Edge[POSTag]) is

the probability (see equation (6)) of an edge based on Part-of-Speech tags. It has

a mean of x = 0.27 and a standard deviation σ = 0.11. The observation of this

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 35

probability’s distribution implies that POS tags offer a rather general approach to

calculating edges, and more often than not, do not offer a high degree of certainty

for an action at. The bottom histogram is not a probability, but the normalised and

scaled (0 to 1) values of token distance within a sentence, which have been observed

to become connected by an edge. We data-mined it because it aids the agent by

correctly inferring if an edge, which would otherwise be highly probable to exist,

should be in fact filtered out, due to an extreme distance of the two tokens inside the

sentence. It has a mean of x = 0.04 and a standard deviation of σ = 0.55.

[Figure 10 about here.]

In Figure 10 we used the data shown as histograms previously in Figure 9, and

plotted it in three dimensions. The top left point-cloud is the representation in space

of all 30,960 samples taken from low-value and high value actions. The visual

demonstration showcases the correlation of the samples to the entire action search

space, not taking into account the affinely extended real number system and its

implications, but assuming discrete integral values. The uppermost left plot in Figure

10 shows that in the entire search space, only a small amount has been sampled,

when using graph permutation actions from the episodic memory of the agent. The

topmost right plot in Figure 10 is a three-dimensional grid surface, which connects

the points, and thus generalises the data, by using the Q-norm function for all data-

points. The bottom left plot contains the three dimensional Convex Hull (Chazelle,

1993) of the points, superimposed on the cloud. The bottom right plot contains the

same Convex Hull, superimposed on the normalised data grid surface. All plots in

Figure 10 have as X axis the edge probability based on tokens (first histogram in

36 COMPUTATIONAL INTELLIGENCE

Figure 9), the edge probability based on POS tags (second histogram in Figure 9)

for the Y axis, and the normalised token distance (third histogram in Figure 9) as

the Z axis. One evident conclusion from Figure 10 is that the samples are not large,

when taking into to the actual search space, yet they provide enough representational

value to allow the agent to become sufficient. Considering that the search space may

become larger, as more tokens (words) are introduced, the constraining factors are

the fixed set of POS Tags, and the fact that token distances are scaled and normalised.

The second conclusion related to this form of data-mining via action permuta-

tions, is that the data appears to be non-linearly separable, due to the fact that the

convex hull visually appears to intersect closely clustered data-points (Toussaint,

1983); we did not however use any applicable methodology (Elizondo, 2006) to

verify this observation. This observation justifies the usage of a multi-layered ANN,

as it is beneficial when compared to other algorithms, since it allows to efficiently

map and classify data collected from data-mining post-training as high value actions.

6.4. Algorithm Comparison

We compared the various action algorithms employed within the cognitive agent.

The baseline performance measured as a ”random walk” was the random action

controller (Section 2.3.1). All other action selection controllers were tested either

isolated (e.g., the only action selection mechanism active) or fused together, in a

cascading mode, starting from probabilistic, to semantic and random, or semantic

to probabilistic and random. The neural action controller was tested in combination

with other algorithms, but found to perform significantly better on its own, whereas

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 37

the best cascade of the remaining controllers was probabilistic, to semantic and

random.

Cascading Semantic with probabilistic, and probabilistic with semantic showed

that preferential execution of probabilistic before falling back to Semantic was sig-

nificantly better as average graph similarity. Probabilistic execution was optimised,

by combining probabilities and by using them in a preferential manner, where to-

ken probability was chosen over POS tag probability. An explanation for this phe-

nomenon is the debate of generality over granularity; probabilities based on POS tags

are presumed to be generalising action decisions, whereas token-based probabilities

offer a much more granular approach, but are not always available, since the agent

may be given unknown tokens or unseen tokens. Semantic action selection, when run

semi-isolated (using only a random selector as a fall-back), showed a marginally bet-

ter than random accuracy. As aforementioned, VSM similarity only shows that some

episodes are similar up to a certain degree, and because the Semantics algorithm

relies on finding VSM-similar episodes, it most often was unusable. Furthermore,

smaller data-sets have a low average VSM similarity, thus feature vectoring was not

of much use to the agent. Other data-sets had higher average VSM similarity, but

also a higher graph complexity.

A comparison of the probabilistic and neural controllers provides some insight as

to why neural-based approaches may in fact be more suitable than statistical-based

approaches in the field of cognitive agents. The neural controller is trained using

probability values and scaled distance values, but it develops the ability to filter,

classify and differentiate good from bad actions, whereas the probabilistic controller

generalises a lot of actions. This is evidenced by the fact that, although the ANN

38 COMPUTATIONAL INTELLIGENCE

controller uses both probability values and scaled/normalised arithmetic values, it

outperforms the empirical probability controller. We have optimised and tried nu-

merous experiments with probability-based controllers, including a naive Bayesian

filter; however, we found that a large multilayer feed-forward neural network always

provided better results.

6.5. Artificial Neural Networks as Action Controllers

Due to the nature of neural networks, and more specifically their random weight

initialisation, variable performance was observed. Shuffling training data, and using

Batch Training, combined with the optimisation techniques mentioned in Section

(2.3.4), we proceeded to optimise ANNs, due to strong indications that they would

outperform other algorithms. Initially, the ANNs were not consistent throughout

experiments, and were trained on-the-fly, right after data-mining. This induced a

very generalised classification of actions, which proved inefficient and inaccurate.

Eventually we accumulated data during multiple data-mining passes and gained a

larger training sample for the ANN.

What Figure 11 demonstrates, is the progression from a small and generalising

ANN, which used a small training sample, towards a fine tuned (and large) ANN,

which used a highly representational training sample. The X axes represent the

POS Tag probability values, the Z axes represent the token/node distance within

a sentence (normalised and scaled to -1 and 1) and the Y axes show the token

edge probabilities (formula (6)). That is the same data acquired during data-mining

(Section 3.2, 6.3, Figure 10), with the action value superimposed as a colour. The

Action value is the fourth dimension, described by the heat-map of the graph, where

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 39

green are correct actions, and red incorrect actions. The early ANN was small (less

than 10 neurons) and used a small training sample, but as the agent kept data-mining,

larger training samples were acquired. The steepness of the angle in the ANN shows

the token distance sampling, whereas the spikes and crevices show particular areas

of extreme token distance samples. The final ANN was quite large (300 neurons)

and with 3 layers, of which one is a hidden layer.

[Figure 11 about here.]

We proceeded to train multiple neural networks, and used the best optimised one

for all experiments, regardless of the data-set. The best ANNs for our purpose were

empirically selected, not only via the hyper-parametrisation techniques aforemen-

tioned, but though cross-validation by experimentation using various data-sets as

input. We avoided over-training by using early stopping (Yao et al., 2007), whilst

retaining good generalisation. Due to the nature of optimising hyper-parameters and

ANN architecture, it is plausible that the reported accuracy may further be improved.

The optimal neural network was selected out of a group of many networks,

because it provided consistently the best results across all data-sets with which it

was tested. Continuous updating of the probabilities look-up table enabled us to

create a very large training sample set for the ANNs. Furthermore, by iterating the

episodic memory of the agent, and trying all sorts of permutations as operations on

graphs, and then filtering the known high Q-value actions, we were able to create

an accurate map of high value actions and associate them with input and episodes.

Figure 11 shows that only a small amount of high probability values for edge tokens

40 COMPUTATIONAL INTELLIGENCE

(Y axis) and only a small fraction of high probability POS Tag edges (X axis) are

associated with high value Q(st, at) policies.

6.6. Comparison to State-of-the-Art

In order to determine how well the cognitive agent performed, in comparison to

some of the most recent and related research, we have used the reported accuracy by

their respective authors, as shown in Table (3).

[Table 3 about here.]

Most of the results provided in Table (3) are obtained by using annotated or

formatted data. This needs to be emphasised, as we did not annotate data (with the

exception of the POS-tagging), nor did we use utterances, question-answer scenar-

ios, bi-grams or tri-grams. Our data was partitioned, with input text length ranging

from 4 to 30 words, as resulted from the harvested data sets. Choi et al mention that

most parsers have a UAS accuracy of 93.49 to 95.5 for sentences under 10 terms,

which declines to 81.66 and 86.61 for sentences larger than 50 terms. Examining

Table (3), (Zhong et al., 2011) used a manual template model, and reported 85%

to 88% accuracy on concept entities, and 74% to 95% accuracy on relations (pos-

sesive, function, broader, style, content). Our average entity accuracy was higher

(96.90%). Moreover, Zhong et al. do not mention conceptual graph accuracy, nor do

they provide information about their datasets, or the edge accuracy. In comparison,

our cognitive agent combines unsupervised learning (reinforcement learning via

examples), with semi-supervised learning (for the ANN), and self-supervised (data-

mining) in order to achieve a very high graph similarity.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 41

Vlachos et al, in their various research studies (Vlachos, 2012; Andreas et al.,

2013; Vlachos and Clark, 2014) used a variety of models, techniques and data-

sets. Most notable is their action selection using reinforcement learning, which was

average (reported 55%). However, they used the question-answer scenario with ut-

terances, which is different from conceptual graph creation, which would be con-

sidered an easier type of data to learn. Furthermore, the data-sets they used are

fundamentally different, as they are annotated and use MRLs instead of conceptual

graphs. A parallelism that can be drawn upon comparison to their work is that node

prediction, constant argument prediction, string argument prediction, node argument

prediction, focus/negation prediction, are processes/algorithms similar to conceptual

graph entity and relation recognition. Node prediction in MRL could be hypotheti-

cally substituted by graph node recognition/prediction in conceptual graphs, whereas

the argument prediction is essentially the correct connection of predicates with their

arguments, via edges (as per the conceptual graph literature).

Other researchers (Poon and Domingos, 2009) used similar models (neural net-

works) but very different approaches: they implement λ-form clusters and predefined

formal meaning representations. They report an accuracy of 88%, and emphasise

the usage of Deep Learning, a very insightful conclusion that could further aid the

progression of cognitive agents. A comparison here may be the assumption that rigid

rules and pre-definitions might in fact hinder accuracy, since they impose restrictions

on patterns that might be exceptions to those rules.

Another comparison is with (Wong and Mooney, 2006) and the WASP statis-

tical system. They used tree structures for argumentation (relation extraction) and

achieved very similar results. Current state-of-the-art research from Berkley (Durrett

42 COMPUTATIONAL INTELLIGENCE

and Klein, Durrett and Klein) reports 90.97% F1 score, which mentions using text

sizes of up to 40 words (albeit without any further details, such as average sentence

word length). They use neural-based models and train them on anchors using various

features. Taking into consideration that their average input size is unknown, we

can conclude that a cognitive agent such as the one described here, manages to

marginally surpass their accuracy, if the average sentence length is similar. Other

researchers (Socher et al., 2011) using recurrent neural networks (RNN) also report

similar results, a strong indication that neural-based models can recognize, associate

and learn, not only specific relations which statistical models also can learn, but

patterns (e.g., anchors) and recurring graph structures.

Finally, we need to stress the fact that the above comparison serves only as a

reference point. The aforementioned research is the closest reference to a cognitive

agent performing semantic parsing, and although the mechanisms, implementation

and datasets are different, the comparison aims to create a valid reference to the

research done in the recent past. What is of relevance in this comparison is that

similar KR schemes and technologies have similar accuracy and performance. Thus

it is justifiable to presume that ML-based cognitive agent systems are comparable to

heuristic semantic parsing for Natural language processing.

Furthermore, the agent described is not bound by rules, logic forms or syntax,

but, on the contrary, is designed to learn and identify patterns arising from training

sets in a self-constrained manner.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 43

7. DISCUSSIONS AND CONCLUSIONS

In this paper, we have proposed a cognitive agent which is capable of learning

to represent knowledge as conceptual graphs, in other words, perform semantic

parsing, based on machine learning, with limited prior knowledge. Not only is this

possible, but the agent also learns by examples from humans, with a good accuracy

in the same ballpark as current state-of-the-art. Moreover, we have demonstrated the

feasibility of this approach on realistic input sentences of different sizes (including

large sized ones, unlike in some of the prior research), from real-life text repositories.

Such an approach, as witnessed by the recent commercialisation of AI by tech

giants (IBM, Amazon, NVIDIA, Google, Apple, Microsoft, etc) can be applicable in

personal assistants, knowledge assistants, expert systems, predictive analytic agents,

chatbots and dialogue systems, and many more. Furthermore, because this approach

performs real-time (during input propagation), it has the potential to be used in real

applications with some further optimisation, such as training with big data in order

to increase its accuracy when dealing with large sentences.

Concluding, we can say that the unique properties of conceptual graphs, their

adaptability and mathematical properties, are an advantage to semantic parsing. Tem-

plates, rules and expressions often hard-coded in rule-based natural language pro-

cessing (NLP), can instead be identified and learnt, and heuristic rules and phenom-

ena, such as functions with arguments, exist as relations and the edges within a graph.

However, all that added mutability and adaptability of conceptual graphs comes at

certain cost; their creation is just as complex as MRL and other KR structures, if

not more complex, due to the absence of constrains and rules. Furthermore, because

44 COMPUTATIONAL INTELLIGENCE

CG are bipartite graphs, failure to correctly classify a word or token as a relation or

concept, propagates that error to the edge creation. We believe this to be a limitation

of CG, which reduces the overall accuracy; the assumption being that the same

agent using MRL could potentially have a higher accuracy, especially when dealing

with larger sentences, which is when we’ve witnessed both node and edge accuracy

decreasing, the first affecting the latter.

The ability to manipulate knowledge at such a low-level as that of a mathematical

construct (a graph) creates new obstacles and questions: how does knowledge com-

plexity affect KR and semantic parsing, what underlying properties and attributes of

the Natural Language are usable and which aren’t, and many more questions.

We believe that the current performance of the cognitive agent may be further

limited by the fact that it tries to apply general probabilities (even through ANN

filtering and classification) and that is a justified but somewhat limiting approach.

We arrived to this conclusion, by observing how larger and more complex input

makes the agent less accurate.

The intrinsic value of empirical probabilities is abstracting, and the probability

values of specific tokens become too granular, thus focusing too much on specific

words and their edges, rather than identifying graph patterns, and sub-patterns. Part

of our future planned work is to consider enabling the agent to detect graph pat-

terns and features using deep learning and sparse encoding, and ignore generalising

statistical properties.

The current agent, as described and implemented, showcases a clearly novel

approach: constructing representations as a temporal-spatial sequence is indeed a

subject of machine learning, even at the most symbolic level of the information. Such

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 45

a notion has not been explored before, where the norm was to use feature vectors.

Furthermore, the approach of combining Machine Learning (here, reinforcement

learning and ANN) with KR construction is not limited to conceptual graphs; any

type of KR model as well as logic representation could potentially be learnt using

this approach. It has been shown that MRL and RDF can be translated to CG, and

as such it is plausible that even without a graph being the representation, a spatial-

temporal sequence could Markovianly describe another KR form. This has the added

benefit that the agent or system implementing such an approach is learning the actual

spatial-temporal process.

The gravity of that notion transcends semantic parsing, as the cognitive agent

moves beyond traditional heuristics or neural models, into an area where demon-

stration is observed, learnt, analysed and then reused, in order to keep learning

indefinitely in an unsupervised manner. Furthermore, due to the nature of neural-

dynamic programming, and its basis upon human brain physiology (Bertsekas and

Tsitsiklis, 1995), we avoid heuristic constrains and other finite-state related issues

(such as uncertainty).

This agent is a step towards autonomous cognitive agents, able not only to read

and understand information and knowledge, but perform other types of high level

cognitive functions, using the same spatial-temporal ML approach. The main contri-

bution of this work is that a neuro-dynamic agent, learnt to do semantic parsing via

observation alone. This is, in essence, a cognitive agent, learning how to read text,

only by being ”shown” by a human user - similar to how children learn how to read.

46 COMPUTATIONAL INTELLIGENCE

REFERENCES

ABADI, MARTÍN, ASHISH AGARWAL, PAUL BARHAM, EUGENE BREVDO, ZHIFENG CHEN, CRAIG CITRO,

GREG S CORRADO, ANDY DAVIS, JEFFREY DEAN, MATTHIEU DEVIN, and OTHERS. 2016. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. In arXiv preprint arXiv:1603.04467.

ANDOR, DANIEL, CHRIS ALBERTI, DAVID WEISS, ALIAKSEI SEVERYN, ALESSANDRO PRESTA, KUZMAN

GANCHEV, SLAV PETROV, and MICHAEL COLLINS. 2016. Globally normalized transition-based neural

networks. In arXiv preprint arXiv:1603.06042.

ANDREAS, JACOB, ANDREAS VLACHOS, and STEPHEN CLARK. 2013. Semantic parsing as machine transla-

tion. In ACL (2), pp. 47–52.

BACH, JOSCHA. 2009. Principles of synthetic intelligence PSI: an architecture of motivated cognition, Volume 4.

Oxford University Press.

BAROOAH, PRABIR, and JOÄO P HESPANHA. 2007. Estimation on graphs from relative measurements. Control

Systems, IEEE, 27(4):57–74.

BELLMAN, RICHARD. 1957. A markovian decision process. Technical report, DTIC Document.

BERTSEKAS, DIMITRI P, and JOHN N TSITSIKLIS. 1995. Neuro-dynamic programming: an overview. In De-

cision and Control, 1995., Proceedings of the 34th IEEE Conference on, Volume 1, IEEE, pp. 560–564.

BRODERSEN, KAY H, CHENG SOON ONG, KLAAS E STEPHAN, and JOACHIM M BUHMANN. 2010. The

balanced accuracy and its posterior distribution. In Pattern Recognition (ICPR), 2010 20th International

Conference on, IEEE, pp. 3121–3124.

CAMPBELL, KEITH E, and MARK A MUSEN. 1992. Representation of clinical data using snomed iii and

conceptual graphs. In Proceedings of the Annual Symposium on Computer Application in Medical Care,

American Medical Informatics Association, p. 354.

CAVAZZUTI, MARCO. 2012. Optimization Methods: From Theory to Design Scientific and Technological

Aspects in Mechanics. Springer Science & Business Media.

CHAZELLE, BERNARD. 1993. An optimal convex hull algorithm in any fixed dimension. Discrete &

Computational Geometry, 10(1):377–409.

CHEIN, MICHEL, and MARIE-LAURE MUGNIER. 2008. Graph-based knowledge representation: computational

foundations of conceptual graphs. Springer Science & Business Media.

CHEN, DAVID L., and RAYMOND J. MOONEY. 2008. Learning to sportscast: A test of grounded language

acquisition. In Proceedings of 25th International Conference on Machine Learning (ICML-2008), Helsinki,

Finland.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 47

CHOI, JINHO D, JOEL TETREAULT, and AMANDA STENT. 2015. It depends: Dependency parser comparison

using a web-based evaluation tool. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of

the Asian Federation of Natural Language Processing, ACL, pp. 26–31.

CLARKE, DAOUD. 2015. Simple, fast semantic parsing with a tensor kernel. In arXiv preprint arXiv:1507.00639.

CORMEN, THOMAS H.., CHARLES ERIC LEISERSON, RONALD L RIVEST, and CLIFFORD STEIN. 2001.

Introduction to algorithms, Volume 6. MIT press Cambridge.

COXETER, HAROLD SCOTT MACDONALD. 1973. Regular polytopes. Courier Corporation.

CRAVEN, MARK, JOHAN KUMLIEN, and OTHERS. 1999. Constructing biological knowledge bases by extracting

information from text sources. In ISMB, Volume 1999, pp. 77–86.

CROITORU, MADALINA, BO HU, SRINANDAN DASMAHAPATRA, PAUL LEWIS, DAVID DUPPLAW, ALEX

GIBB, MARGARIDA JULIA-SAPE, JAVIER VICENTE, CARLOS SAEZ, JUAN MIGUEL GARCIA-GOMEZ,

and OTHERS. 2007. Conceptual graphs based information retrieval in health agents. In Computer-Based

Medical Systems, 2007. CBMS’07. Twentieth IEEE International Symposium on, IEEE, pp. 618–623.

DAVID L. CHEN, JOOHYUN KIM, RAYMOND J. MOONEY. 2010. Training a multilingual sportscaster: Using

perceptual context to learn language. Journal of Artificial Intelligence Research, 37:397–435.

DUAN, YAN, MARCIN ANDRYCHOWICZ, BRADLY STADIE, JONATHAN HO, JONAS SCHNEIDER, ILYA

SUTSKEVER, PIETER ABBEEL, and WOJCIECH ZAREMBA. 2017. One-shot imitation learning. In arXiv

preprint arXiv:1703.07326.

DURRETT, GREG, and DAN KLEIN. Neural crf parsing.

ELIZONDO, DAVID. 2006. The linear separability problem: Some testing methods. Neural Networks, IEEE

Transactions on, 17(2):330–344.

EVEN-DAR, EYAL, and YISHAY MANSOUR. 2004. Learning rates for q-learning. The Journal of Machine

Learning Research, 5:1–25.

FELLBAUM, CHRISTIANE. 1998. WordNet. Wiley Online Library.

GALEF JR, BENNETT G. 1988. Imitation in animals: history, definition, and interpretation of data from the

psychological laboratory. Social learning: Psychological and biological perspectives, 28.

GKIOKAS, ALEXANDROS. 2016. Imitation learning in artificial intelligence. Ph. D. thesis, University of

Warwick.

GORRELL, PAUL. 2006. Syntax and parsing, Volume 76. Cambridge University Press.

GREFENSTETTE, EDWARD, PHIL BLUNSOM, NANDO DE FREITAS, and KARL MORITZ HERMANN. 2014. A

48 COMPUTATIONAL INTELLIGENCE

deep architecture for semantic parsing. In Proceedings of the ACL 2014 Workshop on Semantic Parsing.

HAGAN, MARTIN T, HOWARD B DEMUTH, MARK H BEALE, and OTHERS. 1996. Neural network design.

Pws Pub. Boston.

HAIKONEN, PENTTI OA. 2009. Qualia and conscious machines. International Journal of Machine Conscious-

ness, 1(02):225–234.

HAIKONEN, PENTTI O. 2012. Consciousness and robot sentience, Volume 2. World Scientific.

HEMPHILL, CHARLES T, JOHN J GODFREY, and GEORGE R DODDINGTON. 1990. The atis spoken language

systems pilot corpus. In Proceedings of the DARPA speech and natural language workshop, pp. 96–101.

HIGGINS, JAMES J. 2003. Introduction to modern nonparametric statistics.

HONNIBAL, MATTHEW, and MARK JOHNSON. 2015. An improved non-monotonic transition system for

dependency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, p. 13731378.

HOWARD, RONALD A. 1970. Dynamic programming and Markov processes. MIT Press.

INTAN, ROLLY, CHI-HUNG CHI, HENRY N PALIT, and LEO W SANTOSO. 2015. Intelligence in the Era of Big

Data: 4th International Conference on Soft Computing, Intelligent Systems, and Information Technology,

ICSIIT 2015, Bali, Indonesia, March 11-14, 2015. Proceedings, Volume 516. Springer.

JURAFSKY, DAN, and JAMES H MARTIN. 2000. Speech & language processing. Pearson Education India.

KAMSU-FOGUEM, BERNARD, and VINCENT CHAPURLAT. 2006. Requirements modelling and formal analysis

using graph operations. International Journal of Production Research, 44(17):3451–3470.

KAMSU-FOGUEM, BERNARD, FABIEN RIGAL, and FÉLIX MAUGET. 2013. Mining association rules for the

quality improvement of the production process. Expert systems with applications, 40(4):1034–1045.

LAWNICZAK, ANNA T, and BRUNO N DI STEFANO. 2010. Computational intelligence based architecture for

cognitive agents. Procedia Computer Science, 1(1):2227–2235.

LIANG, PERCY, and CHRISTOPHER POTTS. 2015. Bringing machine learning and compositional semantics

together. Annu. Rev. Linguist., 1(1):355–376.

LIEBERMAN, HENRY. 2001. Your wish is my command: Programming by example. Morgan Kaufmann.

MARCUS, MITCHELL P, MARY ANN MARCINKIEWICZ, and BEATRICE SANTORINI. 1993. Building a large

annotated corpus of english: The penn treebank. Computational linguistics, 19(2):313–330.

MARTINS, ANDRÉ FT, MIGUEL B ALMEIDA, and NOAH A SMITH. 2013. Turning on the turbo: Fast third-

order non-projective turbo parsers. In Proceedings of the Conference, p. 617.

MATSUMOTO, MAKOTO, and TAKUJI NISHIMURA. 1998. Mersenne twister: a 623-dimensionally equidis-

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 49

tributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer

Simulation (TOMACS), 8(1):3–30.

MONTES-Y GÓMEZ, MANUEL, ALEXANDER GELBUKH, and AURELIO LÓPEZ-LÓPEZ. 2002. Text mining

at detail level using conceptual graphs. In Conceptual Structures: Integration and Interfaces. Springer, pp.

122–136.

NEHANIV, CHRYSTOPHER L, and KERSTIN DAUTENHAHN. 2007. Imitation and social learning in robots,

humans and animals: behavioural, social and communicative dimensions. Cambridge University Press.

NISSEN, STEFFEN. 2003. Implementation of a fast artificial neural network library (fann). Report, Department

of Computer Science University of Copenhagen (DIKU), 31.

PETROV, SLAV. 2016. Announcing syntaxnet: The worlds most accurate parser goes open source. In Google

Research Blog.

POON, HOIFUNG, and PEDRO DOMINGOS. 2009. Unsupervised semantic parsing. In Proceedings of the 2009

Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume 1, EMNLP ’09,

Association for Computational Linguistics, Stroudsburg, PA, USA. ISBN 978-1-932432-59-6. pp. 1–10.

http://dl.acm.org/citation.cfm?id=1699510.1699512.

POPESCU, ANA-MARIA, OREN ETZIONI, and HENRY KAUTZ. 2003. Towards a theory of natural language

interfaces to databases. pp. 149–157.

PRADHAN, SAMEER S, WAYNE WARD, KADRI HACIOGLU, JAMES H MARTIN, and DANIEL JURAFSKY.

2004. Shallow semantic parsing using support vector machines. In HLT-NAACL, pp. 233–240.

RASLI, RUZIANA BINTI MOHAMAD, FAUDZIAH AHMAD, and SITI SAKIRA KAMARUDDIN. 2014. A compar-

ative study of conceptual graph and concept map. Journal of Engineering and Applied Sciences, 9(9):1442–

1446.

REAL, RAIMUNDO, and JUAN M VARGAS. 1996. The probabilistic basis of jaccard’s index of similarity.

In Systematic biology, pp. 380–385.

RIJSBERGEN, C. J. VAN. 1979. Information Retrieval (2nd ed.). Butterworth-Heinemann, Newton, MA, USA.

ISBN 0408709294.

RUIZ, PAULA POTES, BERNARD KAMSU FOGUEM, and BERNARD GRABOT. 2014. Generating knowledge in

maintenance from experience feedback. Knowledge-Based Systems, 68:4–20.

SAGAE, KENJI. 2009. Analysis of discourse structure with syntactic dependencies and data-driven shift-reduce

parsing. In Proceedings of the 11th International Conference on Parsing Technologies, Association for

Computational Linguistics, pp. 81–84.

http://dl.acm.org/citation.cfm?id=1699510.1699512

50 COMPUTATIONAL INTELLIGENCE

SAGAE, KENJI, and ALON LAVIE. 2006. A best-first probabilistic shift-reduce parser. In Proceedings of the

COLING/ACL on Main conference poster sessions, Association for Computational Linguistics, pp. 691–

698.

SHEELA, K GNANA, and SN DEEPA. 2013. Review on methods to fix number of hidden neurons in neural

networks. Mathematical Problems in Engineering, 2013.

SHI, LEI, and RADA MIHALCEA. 2005. Putting pieces together: Combining framenet, verbnet and wordnet

for robust semantic parsing. In Computational linguistics and intelligent text processing. Springer, pp.

100–111.

SHIEBER, STUART M. 1983. Sentence disambiguation by a shift-reduce parsing technique. In Proceedings

of the 21st annual meeting on Association for Computational Linguistics, Association for Computational

Linguistics, pp. 113–118.

SOCHER, RICHARD, CLIFF C LIN, CHRIS MANNING, and ANDREW Y NG. 2011. Parsing natural scenes and

natural language with recursive neural networks. In Proceedings of the 28th international conference on

machine learning (ICML-11), pp. 129–136.

SOWA, JOHN F. 1999. Knowledge representation: logical, philosophical, and computational foundations. Course

Technology.

STACKEXCHANGE. 2015. How to choose the number of hidden layers and nodes in a feed-

forward neural network? http://stats.stackexchange.com/questions/181/

how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw/

1097#1097. [Online; accessed 2015-09-30].

SUTTON, RICHARD STUART. 1984. Temporal credit assignment in reinforcement learning. Ph. D. thesis,

University of Massachusetts Amherst.

SUTTON, RICHARD S., and ANDREW G. BARTO. 1998. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA. ISBN 0-262-19398-1.

TANG, LAPPOON R, and RAYMOND J MOONEY. 2001. Using multiple clause constructors in inductive logic

programming for semantic parsing. In Machine Learning: ECML 2001. Springer, pp. 466–477.

TOUSSAINT, GODFRIED T. 1983. Solving geometric problems with the rotating calipers. In Proc. IEEE

Melecon, Volume 83, p. A10.

TSURUOKA, YOSHIMASA, YUSUKE MIYAO, and JUN’ICHI KAZAMA. 2011. Learning with lookahead: can

history-based models rival globally optimized models? In Proceedings of the Fifteenth Conference on

Computational Natural Language Learning, Association for Computational Linguistics, pp. 238–246.

http://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw/1097#1097
http://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw/1097#1097
http://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw/1097#1097

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 51

TURNEY, PETER D, PATRICK PANTEL, and OTHERS. 2010. From frequency to meaning: Vector space models

of semantics. Journal of artificial intelligence research, 37(1):141–188.

VLACHOS, ANDREAS. 2012. An investigation of imitation learning algorithms for structured prediction.

In EWRL, Citeseer, pp. 143–154.

VLACHOS, ANDREAS, and STEPHEN CLARK. 2014. A new corpus and imitation learning framework for

context-dependent semantic parsing. Transactions of the Association for Computational Linguistics, 2:547–

559.

WATKINS, CHRISTOPHER JOHN CORNISH HELLABY. 1989. Learning from delayed rewards. Ph. D. thesis,

University of Cambridge England.

WEISS, DAVID, CHRIS ALBERTI, MICHAEL COLLINS, and SLAV PETROV. 2015. Structured training for neural

network transition-based parsing. In arXiv preprint arXiv:1506.06158.

WINER, BEN JAMES, DONALD R BROWN, and KENNETH M MICHELS. 1971. Statistical principles in

experimental design, Volume 2. McGraw-Hill New York.

WINSBERG, ERIC. 2003. Simulated experiments: Methodology for a virtual world. Philosophy of sci-

ence, 70(1):105–125.

WOLD, SVANTE, KIM ESBENSEN, and PAUL GELADI. 1987. Principal component analysis. Chemometrics and

intelligent laboratory systems, 2(1):37–52.

WONG, YUK WAH, and RAYMOND J. MOONEY. 2006. In Proceedings of the Main Conference on Human

Language Technology Conference of the North American Chapter of the Association of Computational

Linguistics, HLT-NAACL ’06, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 439–

446.

WRIGHT, E MAITLAND. 1977. The number of connected sparsely edged graphs. Journal of Graph The-

ory, 1(4):317–330.

YAO, YUAN, LORENZO ROSASCO, and ANDREA CAPONNETTO. 2007. On early stopping in gradient descent

learning. Constructive Approximation, 26(2):289–315. ISSN 0176-4276. . http://dx.doi.org/10.

1007/s00365-006-0663-2.

ZHANG, HAO, and RYAN MCDONALD. 2012. Generalized higher-order dependency parsing with cube pruning.

In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning, Association for Computational Linguistics, pp. 320–331.

ZHANG, YUAN, TAO LEI, REGINA BARZILAY, TOMMI JAAKKOLA, and AMIR GLOBERSON. 2014. Steps to

excellence: Simple inference with refined scoring of dependency trees. In Proceedings of the 52nd Annual

http://dx.doi.org/10.1007/s00365-006-0663-2
http://dx.doi.org/10.1007/s00365-006-0663-2

52 COMPUTATIONAL INTELLIGENCE

Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp.

197–207.

ZHONG, MAOSHENG, JIANYONG DUAN, and JIAN ZOU. 2011. Indexing conceptual graph for abstracts of

books. In Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on,

Volume 3, IEEE, pp. 1816–1820.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 53

L
o

n
g

-T
e
rm

S
h

o
rt

-T
e
rm

R

re
w
a
rd
s

D
e
c e
x
tr
a
c
ts

a
p
p
ro
x
im

a
te
s

S
ta

ti
s
ti
c
s

S
e
m

a
n

ti
c

g
ra

p
h

s

k
n

o
w

le
d

g
e

g
ra

p
h

s

s
h

a
llo

w

n
e
tw

o
rk

s

d
e
e
p

n

e
tw

o
rk

s

P
r
o
b

E
n
c

M
in
e
r

V
e
c
to

r
S

p
a
c
e

M
o

d
e
l

D
.P
.

E
p

is
o

d
ic

m

e
m

o
ry

W
o

rd
N

e
t

H
e
u
r

In
p

u
t

o
u

tp
u

t

L
e
a
r
n

In
fe
r

u
s
e
s

p
ro
v
id
e
s

c
re
a
te
s

fe
e
d
s

a
p
p
ro
x
im

a
te
s

fe
e
d
s

a
p
p
ro
x
im

a
te
s

c
la
s
s
if
y

p
o
p
u
la
te
s

p
ro
c
e
s
s

p
ro
d
u
c
e
s

c
o
n
tr
o
ls

tr
a
in
s

p
o
p
u
la
te
s

u
p
d
a
te
s

F
IG

U
R

E
1:

A
ge

nt
Sc

he
m

a:
ov

er
al

lc
om

po
ne

nt
s

of
th

e
ag

en
ta

nd
ho

w
th

ey
co

nn
ec

tw
ith

ea
ch

-o
th

er
.

54 COMPUTATIONAL INTELLIGENCE

FIGURE 2: Agent Observation: A graph is observed and then recreated.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 55

agent

environment

actionstate reward

FIGURE 3: Agent Reward: Temporal MDP is rewarded.

56 COMPUTATIONAL INTELLIGENCE

FIGURE 4: CG population: Temporal Shift-Reduce populates the graph with nodes
and connects them.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 57

FIGURE 5: Graph Example: A simple linear graph.

58 COMPUTATIONAL INTELLIGENCE

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14

W
o

rd
s
 /

 T
o

k
e

n
s
 I

n
p

u
t

Dataset Partition ID

Dataset Characteristics

Avg
Max
Min

Range

FIGURE 6: Dataset Characteristics: Subset Partitioning, Average Sentence Size,
Average Minimum Size, Average Maximum Size.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 59

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Overall Accuracy

Sorensen-Dice / F1 Score
Jaccard Coefficient

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 6 7 8 9 10 11
A

v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Graph Component Accuracy

Node Similarity
Edge Similarity

F1 Score

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 6 7 8 9 10 11

S
m

o
o
th

e
d
 A

c
c
u
ra

c
y

Avg. Input Size pi

Overall Accuracy

Sorensen-Dice / F1 Score
Jaccard Coefficient

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 6 7 8 9 10 11

S
m

o
o
th

e
d
 A

c
c
u
ra

c
y

Avg. Input Size pi

Component Smoothed Accuracy

Node Similarity
Edge Similarity

F1 Score

FIGURE 7: Agent Accuracy: correlation of input complexity (average sentence
length) to different datasets.

60 COMPUTATIONAL INTELLIGENCE

Complexity Map

−2

−1

 0

 1

 2

 3

 4

 5

Input Complexity (PCA)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Node−Edge Ratio

 1

 2

 3

 4

 5

 6

 7

 8

 9

G
ra

p
h
 P

a
th

−
S

iz
e

Accuracy and Graph Complexity

−2

−1

 0

 1

 2

 3

 4

 5

Input Complexity (PCA)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Node−Edge Ratio

 1

 2

 3

 4

 5

 6

 7

 8

 9

G
ra

p
h
 P

a
th

−
S

iz
e

high

A
c
c
u
ra

c
y
 H

e
a
tm

a
p
 (

P
C

A
)

FIGURE 8: Graph complexity and Agent accuracy: Correlation between Node and
Edge sizes, Average Sentence Size, and Sorensen/Jaccard PCA Accuracy.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 61

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

 o
f

E
v

en
t

Edge-Token Probability

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

 o
f

E
v

en
t

Edge-POS-Tag Probability

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

 o
f

E
v

en
t

Edge-Token Distance

FIGURE 9: Probability Distribution Histograms: Distribution of event-frequency
metrics data-mined by the agent.

62 COMPUTATIONAL INTELLIGENCE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Point Cloud

Term-based ProbabilityPOS-tag Probability

T
er

m
 D

is
ta

n
ce

Q-Norm Grid Surface

 0

 0.2

 0.4

 0.6

 0.8

 1

Term-based Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

POS-tag Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

T
er

m
 D

is
ta

n
ce

Point Cloud Convex Hull

 0

 0.2

 0.4

 0.6

 0.8

 1

Term-based Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

POS-tag Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

T
er

m
 D

is
ta

n
ce

Q-Norm Grid Surface Convex Hull

 0

 0.2

 0.4

 0.6

 0.8

 1

Term-based Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

POS-tag Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

T
er

m
 D

is
ta

n
ce

FIGURE 10: Probability Distribution Cloud and 3D Surface Q-normalised: Demon-
stration of non-linear separability of the state space.

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 63

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

T
o

k
en

 D
is

ta
n

ce

Early Data-Mining (270 Samples)

Pr(Edge-Token)Pr(Edge-POS)

T
o

k
en

 D
is

ta
n

ce

 0 0.2 0.4 0.6 0.8 1

Output Action Q-Value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

T
o

k
en

 D
is

ta
n

ce

Medium Data-Mining (13,905 Samples)

Pr(Edge-Token)Pr(Edge-POS)

T
o

k
en

 D
is

ta
n

ce

 0 0.2 0.4 0.6 0.8 1

Output Action Q-Value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

T
o

k
en

 D
is

ta
n

ce

Advanced Data-Mining (21,915 Samples)

Pr(Edge-Token)Pr(Edge-POS)

T
o

k
en

 D
is

ta
n

ce

 0 0.2 0.4 0.6 0.8 1

Output Action Q-Value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

T
o

k
en

 D
is

ta
n

ce

Late Data-Mining (30,933 Samples)

Pr(Edge-Token)Pr(Edge-POS)

T
o

k
en

 D
is

ta
n

ce

 0 0.2 0.4 0.6 0.8 1

Output Action Q-Value

FIGURE 11: ANN Classification Progression: Improvement of ANN using larger
experience samples.

64 COMPUTATIONAL INTELLIGENCE

Table 1: State of the Art NLU Software Tools.

Name URL

Deep-Syntactic Parser https://github.com/talnsoftware/deepsyntacticparsing

MaltEval http://www.maltparser.org/malteval.html

NLP4J https://github.com/emorynlp/nlp4j

RedShift https://github.com/syllog1sm/Redshift

RBGParser https://github.com/taolei87/RBGParser

SNN http://nlp.stanford.edu/software/nndep.shtml

SpaCy https://spacy.io

SyntaxNet https://github.com/tensorflow/models

TedEval http://www.tsarfaty.com/unipar

TurboParser http://www.cs.cmu.edu/˜ark/TurboParser

https://github.com/talnsoftware/deepsyntacticparsing
http://www.maltparser.org/malteval.html
https://github.com/emorynlp/nlp4j
https://github.com/syllog1sm/Redshift
https://github.com/taolei87/RBGParser
http://nlp.stanford.edu/software/nndep.shtml
https://spacy.io
https://github.com/tensorflow/models
http://www.tsarfaty.com/unipar
http://www.cs.cmu.edu/~ark/TurboParser

COGNITIVE AGENTS AND MACHINE LEARNING BY EXAMPLE: REPRESENTATION WITH CONCEPTUAL GRAPHS 65

Table 2: Commonly used Data-sets

Name Training entries Testing entries Average Sentence Length

ATIS3 7,300 1,000 20.5
Penn-Treebank 2499 unknown 25.6
Our Data-set 1199 variable 10.92
BioNLP11ST 800 260 unknown
GeoQuery 600 280 6.87
RoboCup Data-set 300 unknown 22.52

66 COMPUTATIONAL INTELLIGENCE

Table 3: Performance comparison

Name / Platform Reported Accuracy Data Type

Andor et al (SyntaxNet) 94.44% News Data
Parsey McParseface 94.15% News Data
Weiss et al. (SyntaxNet) 93.91% News Data
Zhang and McDonald 93.32% News Data
Martins et al 93.10% News Data
Our Work 92.78% News Data (CG)
Durett, Klein (Neural CRF) 90.97 % Various Data-sets
Socher, Ling, Ng, Manning (RNN) 90.29% WSJ Treebank
Poon, Domingos (USP) 88% Biomedical abstracts
Vlachos, Clark, Jacob 53% - 81.8% GeoQuery
Vlachos, Clark (DAGGER) 78.9% Tourist Information (MRL)
Wong, Mooney (WASP) 76.77% GeoQuery
Zhong, Duan, Zou 74% - 95% Science book abstracts (CG)
Wong, Mooney (WASP) 72% RoboCup
Vlachos (R.Learning) 55% BioNLP11ST

	Introduction
	
	Theoretical Model
	
	
	State Classification

	Agent Algorithms
	Training
	Data-Mining
	Testing

	Conceptual Graph Data-sets
	
	Training
	Testing

	
	Overall Agent Performance
	Complexity and Accuracy
	Data-mining Results
	Algorithm Comparison
	Artificial Neural Networks as Action Controllers
	Comparison to State-of-the-Art

	Discussions and Conclusions
	References

