Dr Marti Lloret-Cabot marti.lloret-cabot@durham.ac.uk
Associate Professor
Dr Marti Lloret-Cabot marti.lloret-cabot@durham.ac.uk
Associate Professor
Simon J. Wheeler
Jubert A. Pineda
Enrique Romero
Daichao Sheng
Representing transitions between saturated and unsaturated conditions, during drying, wetting and loading paths, is a necessary step for a consistent unification between saturated and unsaturated soil mechanics. Transitions from saturated to unsaturated conditions during drying will occur at a nonzero air-entry value of suction, whereas transitions from unsaturated to saturated conditions during wetting or loading will occur at a lower nonzero air-exclusion value of suction. Air-entry and air-exclusion values of suction for a given soil will differ (representing hysteresis in the retention behaviour) and both are affected by changes in the dry density of the soil or by the occurrence of plastic volumetric strains. The paper demonstrates, through model simulations and comparison with experimental data from the literature (covering drying, wetting and loading tests), that the Glasgow Coupled Model (GCM), a coupled elasto-plastic constitutive model covering both mechanical and retention behaviour, represents transitions between unsaturated and saturated behaviour in a consistent fashion. Key aspects of the GCM are the use of Bishop’s stress tensor for mechanical behaviour, the additional influence of degree of saturation on mechanical yielding, inclusion of hysteresis in the retention behaviour, and the role of plastic volumetric strains (and not total volumetric strains) in the description of the water retention response. The success of the GCM in representing consistently transitions between saturated and unsaturated conditions, together with subsequent mechanical and retention responses, demonstrates the potential of this coupled constitutive model for numerical modelling of boundary value problems involving saturated and unsaturated conditions.
Lloret-Cabot, M., Wheeler, S. J., Pineda, J. A., Romero, E., & Sheng, D. (2018). From saturated to unsaturated conditions and vice versa. Acta Geotechnica, 13(1), 15-37. https://doi.org/10.1007/s11440-017-0577-6
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 11, 2017 |
Online Publication Date | Aug 5, 2017 |
Publication Date | Feb 1, 2018 |
Deposit Date | Oct 2, 2018 |
Publicly Available Date | Oct 4, 2018 |
Journal | Acta Geotechnica |
Print ISSN | 1861-1125 |
Electronic ISSN | 1861-1133 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 13 |
Issue | 1 |
Pages | 15-37 |
DOI | https://doi.org/10.1007/s11440-017-0577-6 |
Published Journal Article
(3.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
A bounding surface mechanical model for unsaturated cemented soils under isotropic stresses
(2020)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Advanced Search