Longhuan Du
Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance
Du, Longhuan; Ingram, Grant; Dominy, Robert
Abstract
New and comprehensive time‐accurate, experimental data from an H‐Darrieus wind turbine are presented to further develop our understanding of the performance of these turbines with a particular focus on self‐starting. The impact of turbine solid-ity, blade profile, surface roughness, pitch angle, and aspect ratio on the turbine's performance is investigated, parameters that are thought to be critical for small‐scale VAWT operation, particularly when operating in the built environment. It is demon-strated clearly that high turbine solidity (???? ≥ 0.81) is beneficial for turbine self‐start-ing and that the selection of a thick, symmetrical aerofoil set at a low, negative pitch angle (???? ≥−2◦) is better than a cambered foil. Increased blade surface roughness is also shown to improve a turbine's self‐starting capability at low tip speed ratios and with high turbine solidity and the associated flow physics are discussed. Finally, it was confirmed that blade span has a significant impact on turbine starting. This paper contributes to the understanding of the turbine characteristics during the start-ing period and provides clear guidance and validation cases for future design and research in order to promote and justify the wider application of this wind turbine configuration.
Citation
Du, L., Ingram, G., & Dominy, R. (2019). Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance. Energy Science and Engineering, 7(6), 2421-2436. https://doi.org/10.1002/ese3.430
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 26, 2019 |
Online Publication Date | Aug 14, 2019 |
Publication Date | Dec 31, 2019 |
Deposit Date | Aug 7, 2019 |
Publicly Available Date | Aug 14, 2019 |
Journal | Energy Science and Engineering |
Publisher | Wiley Open Access |
Peer Reviewed | Peer Reviewed |
Volume | 7 |
Issue | 6 |
Pages | 2421-2436 |
DOI | https://doi.org/10.1002/ese3.430 |
Files
Published Journal Article (Advance online version)
(2.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Energy Science & Engineering published by Society of Chemical Industry and John Wiley & Sons Ltd.
Published Journal Article
(2.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Reynolds-averaged Navier–Stokes modelling in transonic S-ducts with passive flow control
(2020)
Journal Article
A review of H-Darrieus wind turbine aerodynamic research
(2019)
Journal Article
Time-accurate blade surface static pressure behaviour on a rotating H-Darrieus wind turbine
(2019)
Journal Article
Application of fluidic curtains to turbine rotor tip seal geometries.
(2018)
Conference Proceeding