Juhan Aru
Liouville measure as a multiplicative cascade via level sets of the Gaussian free field
Aru, Juhan; Powell, Ellen; Sepúlveda, Avelio
Abstract
We provide new constructions of the subcritical and critical Gaussian multiplicative chaos (GMC) measures corresponding to the 2D Gaussian free field (GFF). As a special case we recover E. Aidekon’s construction of random measures using nested conformally invariant loop ensembles, and thereby prove his conjecture that certain CLE4 based limiting measures are equal in law to the GMC measures for the GFF. The constructions are based on the theory of local sets of the GFF and build a strong link between multiplicative cascades and GMC measures. This link allows us to directly adapt techniques used for multiplicative cascades to the study of GMC measures of the GFF. As a proof of principle we do this for the so-called Seneta–Heyde rescaling of the critical GMC measure. Résumé. — On propose de nouvelles constructions des mesures du chaos multiplicatif gaussien (GMC) sous-critique et critique correspondant au champ libre gaussien 2D (GFF). Comme cas particulier, on retrouve la construction des mesures aléatoires par E. Aidekon, qui utilise des ensembles de boucles emboîtées invariantes par transformations conformes. Ainsi, on prouve sa conjecture selon laquelle certaines mesures basées sur le CLE4 emboîté sont égal en loi aux mesures de GMC pour le GFF. Nos constructions sont basées sur la théorie des ensembles locaux du GFF et permettent d’établir un lien fort entre les cascades multiplicatives et les mesures GMC. Ce lien nous permet d’adapter directement les techniques utilisées pour les cascades multiplicatives à l’étude des mesures de GMC pour le GFF. Comme exemple de ce principe on adapte l’argument de Seneta–Heyde pour construire la mesure critique de la GMC.
Citation
Aru, J., Powell, E., & Sepúlveda, A. (2020). Liouville measure as a multiplicative cascade via level sets of the Gaussian free field. Annales de l'Institut Fourier, 70(1), 245-205. https://doi.org/10.5802/aif.3312
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 17, 2019 |
Online Publication Date | May 28, 2020 |
Publication Date | Jan 1, 2020 |
Deposit Date | Sep 28, 2019 |
Publicly Available Date | Apr 30, 2020 |
Journal | Annales de l'Institut Fourier |
Print ISSN | 0373-0956 |
Electronic ISSN | 1777-5310 |
Publisher | Association des Annales de l'Institut Fourier |
Peer Reviewed | Peer Reviewed |
Volume | 70 |
Issue | 1 |
Pages | 245-205 |
DOI | https://doi.org/10.5802/aif.3312 |
Public URL | https://durham-repository.worktribe.com/output/1284939 |
Files
Published Journal Article
(3.3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Published Journal Article (Advance online version)
(3.3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version Cet article est mis à disposition selon les termes de la licence Creative Commons attribution – pas de modification 3.0 France. http://creativecommons.org/licenses/by-nd/3.0/fr/
You might also like
Lecture notes on the Gaussian free field
(2021)
Book
Brownian half‐plane excursion and critical Liouville quantum gravity
(2022)
Journal Article
Critical Gaussian multiplicative chaos: a review
(2021)
Journal Article
Conformal welding for critical Liouville quantum gravity
(2021)
Journal Article
An invariance principle for branching diffusions in bounded domains
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search