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LIOUVILLE MEASURE AS A MULTIPLICATIVE
CASCADE VIA LEVEL SETS OF THE GAUSSIAN

FREE FIELD

by Juhan ARU, Ellen POWELL & Avelio SEPÚLVEDA

Abstract. — We provide new constructions of the subcritical and critical
Gaussian multiplicative chaos (GMC) measures corresponding to the 2D Gaussian
free field (GFF). As a special case we recover E. Aidekon’s construction of random
measures using nested conformally invariant loop ensembles, and thereby prove
his conjecture that certain CLE4 based limiting measures are equal in law to the
GMC measures for the GFF. The constructions are based on the theory of local
sets of the GFF and build a strong link between multiplicative cascades and GMC
measures. This link allows us to directly adapt techniques used for multiplicative
cascades to the study of GMC measures of the GFF. As a proof of principle we do
this for the so-called Seneta–Heyde rescaling of the critical GMC measure.
Résumé. — On propose de nouvelles constructions des mesures du chaos mul-

tiplicatif gaussien (GMC) sous-critique et critique correspondant au champ libre
gaussien 2D (GFF). Comme cas particulier, on retrouve la construction des me-
sures aléatoires par E. Aidekon, qui utilise des ensembles de boucles emboîtées
invariantes par transformations conformes. Ainsi, on prouve sa conjecture selon la-
quelle certaines mesures basées sur le CLE4 emboîté sont égal en loi aux mesures de
GMC pour le GFF. Nos constructions sont basées sur la théorie des ensembles lo-
caux du GFF et permettent d’établir un lien fort entre les cascades multiplicatives
et les mesures GMC. Ce lien nous permet d’adapter directement les techniques
utilisées pour les cascades multiplicatives à l’étude des mesures de GMC pour le
GFF. Comme exemple de ce principe on adapte l’argument de Seneta–Heyde pour
construire la mesure critique de la GMC.

1. Introduction

Gaussian multiplicative chaos (GMC) theory, initiated by Kahane in the
80s [18] as a generalization of multiplicative cascades, aims to give a mean-
ing to “exp(Γ)” for rough Gaussian fields Γ. In a simpler setting it was

Keywords: Liouville measure, Gaussian free field, Gaussian multiplicative chaos, critical
Gaussian multiplicative chaos, multiplicative cascades.
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already used in the 70s to model the exponential interaction of bosonic
fields [15], and over the past ten years it has gained importance as a key
component in constructing probabilistic models of so-called Liouville quan-
tum gravity in 2D [10, 13] (see also [24] for a review from the perspective
of theoretical physics).
One of the important cases of GMC theory is when the underlying Gauss-

ian field is equal to γΓ, for Γ a 2D Gaussian free field (GFF) [13] and γ > 0
a parameter. It is then possible to define random measures with area ele-
ment “exp(γΓ)dx∧dy”. These measures are sometimes also called Liouville
measures [13], and we will do so for convenience in this article(1) . Due to
the recent work of many authors [8, 13, 28, 32] one can say that we have a
rather thorough understanding of Liouville measures in the so-called sub-
critical regime (γ < 2). The critical regime (γ = 2) is trickier, but several
constructions are also known [11, 12, 17, 25].
Usually, in order to construct the GMC measure, one first approximates

the underlying field using either a truncated series expansion or smooth
mollifiers, then takes the exponential of the approximated Gaussian field,
renormalizes it and shows that the limit exists in the space of measures.
In a beautiful paper [1] the author proposed a different way to construct
measures of multiplicative nature using nested conformally invariant loop
ensembles, inspired by multiplicative cascades. He conjectured that in the
subcritical and critical regime, and in the case where these loop ensembles
correspond to certain same-height contour lines of the underlying GFF,
the limiting measure should have the law of the Liouville measure. In this
paper we confirm his conjecture. This is done by providing new construc-
tions of the subcritical and critical Liouville measures using a certain family
of so called local sets of the GFF [7, 29] and reinterpreting his construc-
tion as a special case of this general setting. Some of our local-set based
constructions correspond to simple multiplicative cascades, and others in
some sense to stopping lines constructions of the multiplicative cascade
measures [20]. Moreover, although the underlying field is Gaussian, our
approximations are “non-Gaussian” but yet both local and conformally in-
variant. Note that for the 1D chaos measures there are recent non-Gaussian
constructions stemming from random matrix theory, see e.g. [34], but they

(1) In the physics literature, the term “Liouville measure” refers to a volume form coming
from a conformal field theory with a non-zero interaction term (see [27, Section 3.6] for an
explanation). This induces a certain weight on the underlying GFF measure. Therefore,
the Gaussian multiplicative chaos measures that we consider in this article are not
precisely the Liouville measures from the physics literature. Our measures correspond
in some sense only to a degenerate case, where the interaction parameter is set to 0.
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are very different in nature. We also remark that our construction strongly
uses the Markov property of the GFF and hence does not easily generalize
to other log-correlated fields.
One simple, but important, consequence of our results is the simultaneous

construction of a GFF in a simply connected domain and its associated
Liouville measure using nested CLE4 and a collection of independent coin
tosses. Start with a height function h0 = 0 on D and sample a CLE4
in D. Inside each connected component of its complement add either ±π
to h0 using independent fair coins. Call the resulting function h1. Now
repeat this procedure independently in each connected component: sample
an independent CLE4, toss coins and add ±π to h1 to obtain h2. Iterate.
Then it is known [7, 23] that these piecewise constant fields hn converge
to a GFF Γ. It is also possible to show that the nested CLE4 used in this
construction is a measurable function of Γ. Proposition 4.4 of the current
article implies that one can construct the Liouville measures associated to
Γ by just taking the limit of measures

Mγ
n (dz) = eγhn(z) CR(z;D \An)

γ2
2 dz.

Here CR(z;D \ An) is the conformal radius of the point z inside the n-th
level loop.
Observe that the above approximation is different from taking naively

the exponential of hn and normalizing it pointwise by its expectation. In
fact, it is not hard to see that in this setting the latter naive procedure
that is used for mollifier and truncated series approximations would not
give the Liouville measure.
In the critical case, and keeping to the above concrete approximation

of the GFF, regularized Liouville measures can be given by the so-called
derivative approximations:

Dn(dz) =
(
−hn(z) + 2 log CR−1(z,D \An)

)
e2hn(z) CR(z;D \An)2 dz.

As the name suggests, they correspond to (minus) the derivative of the
above measure Mγ

n w.r.t. to γ, taken at the critical parameter γ = 2.
We show that these approximate signed measures converge to a positive
measure that agrees (up to a constant factor 2) with the limiting measure
of [1] described in Section 3.3, and also to the critical Liouville measure
constructed in [12, 25].
The connection between multiplicative cascades and the Liouville mea-

sure established by our construction makes it possible to directly adapt
many techniques developed in the realm of branching random walks and
multiplicative cascades to the study of the Liouville measure. This allows
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us to prove a “Seneta–Heyde” rescaling result in the critical regime by fol-
lowing closely the arguments for the branching random walk in [3]. In a
follow-up paper [6], we use this result to transfer another result from cas-
cades, [22], to the case of the Liouville measure, and to thereby answer a
conjecture of [11] in the case of the GFF: we prove that under a suitable
scaling, the subcritical measures converge to a multiple of the critical mea-
sure. Finally, our proofs are robust enough to study the Liouville measure
in non-simply connected domains and also to study the boundary Liouville
measure.
The rest of the article is structured as follows. We start with preliminar-

ies on the GFF, its local sets and Liouville measure. Then, we treat the
subcritical regime and discuss generalizations to non-simply connected do-
mains and to the boundary Liouville measure. Finally, we handle the critical
case: we first show that our construction agrees with both a construction
by E. Aidekon (up to a constant factor 2) and a mollifier construction of
the critical Liouville measure; then, we consider the case of Seneta–Heyde
scaling.

Acknowledgements. We would like to thank R. Rhodes and V. Vargas
for elucidating the existing literature in the critical case and N. Berestycki
for advice on connecting our measure with the existing Liouville measure
in this case. We are also very grateful to W. Werner for presenting us the
Dirichlet–Neumann set-up and for inviting E. Powell to visit ETH on two
occasions, where a large part of this work was carried out. Finally, we thank
the anonymous referee for helpful comments and suggestions. J. Aru and
A. Sepúlveda were supported by the SNF grant #155922, and happy to
be part of the NCCR Swissmap. E. Powell was supported by a Cambridge
Centre for Analysis EPSRC grant EP/H023348/1.

2. Preliminaries on the Gaussian free field and its local
sets

Let D ⊆ R2 denote a bounded, open and simply connected planar do-
main. By conformal invariance, we can always assume that D is equal to
D, the unit disk. Recall that the Gaussian Free Field (GFF) in D can be
viewed as a centered Gaussian process Γ, indexed by the set of continuous
functions in D, with covariance given by

(2.1) E [(Γ, f)(Γ, g)] =
∫∫

D×D
f(x)GD(x, y)g(y) dxdy.

ANNALES DE L’INSTITUT FOURIER
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Here GD is the Dirichlet Green’s function in D, normalized such that
GD(x, y) ∼ log(1/|x− y|) as x→ y for all y ∈ D.

Let us denote by ρεz the uniform measure on the circle of radius ε around
z. Then for all z ∈ D and all ε > 0, one can define Γε := (Γ, ρεz). We remark
that this concrete choice of mollifying the free field is of no real importance,
but is just a bit more convenient in the write-up of the critical case.
An explicit calculation (see e.g. in [13, Proposition 3.2]) then shows that:

(2.2) E
[
ε
γ2
2 exp (γ(Γ, ρεz))

]{
= CR(z;D)γ2/2 if d(z, ∂D) > ε,
6 1 if d(z, ∂D) < ε,

where CR(z;D) is the conformal radius of z in the simply-connected do-
main D. This exact formula holds not only for the circle average, but for
any mollifier ρ̃εz that is radially-symmetric and supported in the disk of
radius ε around z.

The Gaussian free field satisfies a spatial Markov property, and in fact
it also satisfies a strong spatial Markov property. To formalise this, the
concept of local sets was introduced in [29]. They can be thought as the
generalisation of stopping times to a higher dimension.

Definition 2.1 (Local sets). — Consider a random triple (Γ, A,ΓA),
where Γ is a GFF in D, A is a random closed subset of D and ΓA a
random distribution that can be viewed as a harmonic function, hA, when
restricted to D \A. We say that A is a local set for Γ if conditionally on A
and ΓA, ΓA := Γ− ΓA is a GFF in D \A.

Here, by a random closed set we mean a probability measure on the
space of closed subsets of D, endowed with the Hausdorff metric and its
corresponding Borel σ−algebra. For simplicity, we will only work with local
sets A that are measurable functions of Γ and such that A ∪ ∂D is con-
nected. In particular, this implies that all connected components of D\A
are simply-connected. We define FA = σ(A) ∨ σ(ΓA).
Other than the Markov property apparent from the definition, we will

use the following simple properties of local sets. See for instance [29, 35]
for further properties.

Lemma 2.2. — Let (An)n∈N be an increasing sequence of local sets mea-
surable w.r.t. Γ. Then

(1) FAn ⊂ FAn+1 ,

(2)
⋃
An is also a local set and ΓAN → Γ⋃

An
in probability asN →∞,

TOME 0 (0), FASCICULE 0
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(3) if
⋃
An = D, then the join of the σ-algebras FAn is equal to σ(Γ).

Moreover, Γn := ΓAn then converges to Γ in probability in the space
of distributions.

The property (1) follows from the fact that our local sets are measurable
w.r.t. Γ and the characterization of local sets found in [29]. Properties (2)
and (3) follow from the fact that when An ∪ ∂D is connected we have that
GD\An → G

D\
⋃
An

.
In other words, one can approximate the Gaussian free field by taking

an increasing sequence of measurable local sets (An)n∈N and for each n

defining Γn := ΓAn . As Γn are measurable w.r.t. the GFF and also piecewise
harmonic, they give very simple intrinsic approximations to the field. For
example, one could intuitively think that An are the sets that discover the
part of the surface described by the GFF that is linked to the boundary
and on which the GFF has height between −n and n.

2.1. Two useful families of local sets

One useful family of local sets are the so-called two-valued local sets
introduced in [7] and denoted by A−a,b. For fixed a, b > 0, A−a,b is a
local set of the GFF such that: the value of hA inside each connected
component of D \A is constant with value either −a or b; and that is thin
in the sense that for all f smooth we have (ΓA, f) =

∫
D\A f(z)hA(z) dz.

The prime example of such a set is CLE4 coupled with the Gaussian free
field as A−2λ,2λ, where λ is an explicit constant equal to λ = π/2 in our
case [7, 23]. In analogy with stopping times, they correspond to exit times
of Brownian motion from the interval [−a, b]. We recall the main properties
of two-valued sets:

Proposition 2.3. — Let us consider −a < 0 < b.
(1) When a+b < 2λ, there are no local sets of Γ with the characteristics

of A−a,b.
(2) When a + b > 2λ, it is possible to construct A−a,b coupled with a

GFF Γ. Moreover, the sets A−a,b are
• Unique in the sense that if A′ is another local set coupled with
the same Γ, such that for all z ∈ D, hA′(z) ∈ {−a, b} almost
surely and A′ is thin in the sense above, then A′ = A−a,b
almost surely.

• Measurable functions of the GFF Γ that they are coupled with.

ANNALES DE L’INSTITUT FOURIER
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• Monotonic in the following sense: if [a, b] ⊂ [a′, b′] and −a <
0 < b with b+ a > 2λ, then almost surely, A−a,b ⊂ A−a′,b′ .

• A−a,b has almost surely Lebesgue measure 0.
• For any z, log CR(z;D\A−a,b) − log CR(z;D) has the distri-
bution of the hitting time of {−a, b} by a standard Brownian
motion.

Another nice class of local sets are those that only take one value in
the complement of A. We call them first passage sets and denote them by
Aa (if they only take the value a). These correspond to one-sided hitting
times of the Brownian motion: hence the name. They are of interest in
describing the geometry of the Gaussian free field and are treated in more
detail in [4, 5]. Here, we only provide one working definition and refer to [4]
for a more intrinsic definition, uniqueness and other properties not needed
in the current paper.

Definition 2.4 (First passage set). — Take a > 0. We say that Aa is
the first passage set (FPS) of a GFF Γ, with height a, if it is given by⋃
nA−n,a.

We need a few properties of these sets. The first follows from the defini-
tion, the second and third from calculations in [7, Section 6]:

• We have that ΓAa = a−νa, where νa is a positive measure supported
on Aa;

• Aa has zero Lebesgue measure;
• For any an →∞ we have that

⋃
Aan = D.

Note that because the circle-average of the GFF (Γ, ρεz) is a.s. well-defined
for all z ∈ D, ε > 0 simultaneously, it also means that (νa, ρεz) is a.s.
well-defined and positive for all z, ε as above.
In fact these three properties characterize Aa uniquely [4]. However, in

this paper we only need a weaker uniqueness statement that is a conse-
quence of the following lemma:

Lemma 2.5. — Denote A1 = A−a,a with a > λ and define iteratively
An by exploring copies of A−a,a in each connected component of the com-
plement of An−1. Then, almost surely for a dense countable set z ∈ D the
following holds: for k ∈ N, let nz be the first iteration when hAnz (z) = ak,
the connected component D\Anz containing z is equal to the connected
component of D\Aak containing z.

Proof. — The proof follows from the uniqueness of two-valued sets A−a,b.
Indeed, construct sets Bn by taking B1 = A1 and then repeating the

TOME 0 (0), FASCICULE 0
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construction of Ai only in the components where the value of hBn is not
yet ak. Thus, by construction Bn ⊂ An. Moreover, for any z up to and
including the first iteration where ΓBk(z) = ak, the connected component
of the complement of An and Bn containing z coincide.

Now, note that for a fixed z ∈ D, nz is almost surely finite. Thus it
suffices to prove that for all n ∈ N, the set Bn is contained in A−dane,ak
and that all connected components of D\Bn where hBn takes the value
ak are connected components of D\A−dane,ak where hA−dane,ak is equal
to ak. To see this, first note that hBn ∈ {−an,−a(n − 1), . . . , ak}. In
particular, in each connected component where hBn = c /∈ {−dane, ak} we
can construct the two-valued sets A−dane−c,ak−c. This gives us a local set
B̃ s.t. hB̃ takes only values in {−dane, k}. It is also possible to see that B̃
is thin, by noting that inside each compact set its Minkowski dimension is
smaller than 2 (e.g. see [31, Proposition 4.3]). Then, by uniqueness of the
two-valued sets, Lemma 2.3, B̃ is equal to Adane,k. To finish, notice that
the connected components of D\Bn where hBn took the value ak are also
connected components of B̃ with the same value. �

In particular, from this lemma it follows that we can also construct Aa
in a different way: denote A1 = A−a,a and define A2 by iterating indepen-
dent copies of A−a,a in each component of the complement of D\A1 where
hA1 6= a. Repeat this procedure again in all components of the complement
for which the value still differs from a. This iteration gives an increasing se-
quence of local sets An, whose limit is equal to Aa. For a concrete example,
one could take A−2λ,2λ to be equal to CLE4 in its coupling with the GFF,
and the above procedure would yield A2λ. In fact the sets (A2λn)n∈N are
exactly the sets that the author [1] proposes as a basis for the construction
of the Liouville measure.

3. Overview of the Liouville measure and loop
constructions of [1]

There are many ways to define the Liouville measure in the subcritical
case, the differences amounting to how one approximates the underlying
GFF. We will first describe the approximations using circle averages in the
subcritical case. Then we will discuss the critical regime, and finally present
the nested-loop based constructions from [1] that are conjectured to give
the Liouville measure. From now on we will set D = D for simplicity.

ANNALES DE L’INSTITUT FOURIER



LIOUVILLE MEASURE AS A MULTIPLICATIVE CASCADE 9

3.1. Subcritical regime

Let us recall that we denote Γε(z) = (Γ, ρεz) the ε-circle average of the
GFF around the point z as before. It is known that (Γε(z) : ε > 0, z ∈ D) is
a continuous Gaussian processes that converge to Γ a.s. in the space of dis-
tributions as ε → 0. Thus, one can define approximate Liouville measures
on B(D) by

µγε (dz) := ε
γ2
2 exp (γΓε(z)) dz.

In the subcritical regime we have the following result [8, 13]:

Theorem 3.1. — For γ < 2 the measures µγε converge to a non-trivial
measure µγ weakly in probability. Moreover, for any fixed Borel set O ⊆ D
we have that µγε (O) converges in L1 to µγ(O).

In fact it is known that the measure is also unique, in the sense that the
same limit can be obtained using any sufficiently nice mollifier instead of
the circle average. We will show that the approximations using local sets
give the same measure.

3.2. Critical regime

It is known that for γ > 2, the measures µγε converge to zero [28]. To
define the critical measures an additional renormalization is therefore re-
quired. One way to do it is to use the so-called derivative martingale, orig-
inating from studies on branching random walks. Define

(3.1) νε(dz) := ∂

∂γ

∣∣∣∣
γ=2

µγε (dz) = (−Γε(z) + 2 log(1/ε))ε2 exp (2Γε(z)) dz

It has been recently shown in [25, Theorem 1.1] that νε converges weakly
in probability to a non-trivial limiting measure µ′2 as ε → 0. Moreover,
µ′2 coincides with the critical Liouville measure defined in [11, 12]. We will
again show that the approximations using local sets converge towards same
measure.

Another way to define the critical measure is to use the so-called Seneta–
Heyde renormalization [3, 12]. In the case of the circle-average process the
approximating measures would be defined as:

νε(dz) :=
√

log 1/εµ2
ε(dz).

It has been shown [16, 17] that νε converges in probability to
√

2
πµ
′
2 as

ε→ 0. We will prove an analogous result in our setting.

TOME 0 (0), FASCICULE 0
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3.3. Measures constructed using nested loops

In [1], the author proposes a construction of measures, analogous to the
Liouville measure, using nested conformally-invariant loop ensembles. We
will now describe it in a concrete context that is related to this paper.

Consider a CLE4, and inside each loop toss an independent fair coin.
Keep the loops with heads on top, and sample new CLE4 loops in the
others. Also toss new independent coins inside these loops. Keep track of
all the coin tosses for each loop and repeat the procedure inside each loop
where the number of heads is not yet larger than the number of tails.
Define the resulting set as Ã1. Now define Ãk iteratively by sampling an
independent copy of Ã1 inside each connected component of D \ Ãk−1.

For any Borelian O ⊆ D we can now define

(3.2) M̃γ
k (O) = 1

E[CR(0,D \ Ã1)γ2/2]k

∫
O∩D\Ãk

CR(z,D \ Ãk)
γ2
2 dz

It is shown in [1] that for γ < 2 the measures defined by M̃γ
k converge

weakly almost surely to a non-trivial measure M̃γ . It is also conjectured
there that the limiting measures coincide with the Liouville measures µγ .
We will prove this statement below.
It is further proved in [1] that for γ > 2, these measures converge almost

surely to zero. In the critical case, however, one can again define a derivative
martingale D̃γ

k by taking a derivative with respect to −γ. In other words
one sets:

D̃γ
k(O) = −2 ∂

∂γ
M̃γ
k (O)

(we include the factor 2 here to be consistent with the definition in [1]).
It is shown in [1] that the measures D̃k := D̃2

k converge to a non-trivial
positive measure D̃∞. In this paper, we prove that D̃∞ = 2µ′2.

4. Local set approximations of the subcritical Liouville
measure

In this section we prove that one can approximate the Liouville measure
of a GFF in a simply connected domain using increasing sequences of local
sets (An)n∈N with

⋃
An = D. In particular, the measure constructed in [1]

will fit in our framework and thus it agrees with the Liouville measure. In
fact, for simplicity, we first present the proof of convergence in this specific
case.

ANNALES DE L’INSTITUT FOURIER
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First, recall that we denote by hA the harmonic function given by the
restriction of ΓA to D \ A. For any local set A with Lebesgue measure 0
and bounded hA, we define for any Borelian set O ⊆ D:

Mγ(O, A) :=
∫
O
eγhA CR(z;D \A)γ

2/2 dz.

Notice that as hA is bounded, we can define it arbitrarily on the 0 Lebesgue
measure set A.

Proposition 4.1. — Fix γ ∈ [0, 2). For a > 0, let Aa be the a-FPS of
Γ and µγ be the Liouville measure defined by Γ. Then for each Borelian
set O ⊆ D (including O = D),

Mγ
a (O) := Mγ(O, Aa) = eγa

∫
O

CR(z;D\Aa)γ
2/2dz

is a martingale with respect to FAa and converges a.s. to µγ(O) as a→∞.
Thus, a.s. the measures Mγ

a converge weakly to µγ .

Before the proof, let us see how it implies that the martingales defined
in [1] converge to the Liouville measure:

Corollary 4.2. — The martingales M̃γ
k defined in [1] converge weakly

a.s. to µγ .

Proof. — As a consequence of Lemma 2.5, the fact that A−2λ,2λ has the
law of CLE4 and the fact that the value of its corresponding harmonic
function is independent in each connected component of D\A−2λ,2λ [7, 23],
we see that Ã1 of Section 3.3 is equal in law to A2λ. Furthermore, the
sequence (Ãk)k∈N has the same law as the sequence (A2λk)k∈N.
Now, by the iterative construction and conformal invariance the random

variables
log CR(0,D \ Ãi)− log CR(0,D \ Ãi−1)

with A0 = ∅ are i.i.d. Thus, E[CR(0,D \ Ã1)
γ2
2 ]k = E[CR(0,D \ Ãk)

γ2
2 ].

Moreover, it is known from [7, 30] that − log CR(0,D \ Ãk) corresponds
precisely to the hitting time of kπ by a standard Brownian motion started
from zero. In our case, when 2λ = π, we therefore see that

eγ2λk = E[CR(0,D \ Ã1)
γ2
2 ]−k.

Furthermore, since Leb(A2λ) = 0 implies that Mγ
a (O ∩ A2λ) = 0, we have

that Mγ
2λk agrees with the measure M̃γ

k defined in (3.2). Hence Propo-
sition 4.1 confirms that the limit of M̃γ

k corresponds to the γ- Liouville
measure. �
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Remark 4.3. — In order to avoid repetition, we recall here as a remark
the standard argument showing that the almost sure weak convergence
of measures is implied by the almost sure convergence of Mγ

a (O) over all
boxes O ⊂ D with dyadic coordinates, and the convergence of the total
mass Mγ

a (D). This follows from two observations. Firstly, since all the ap-
proximate measuresMγ

a have zero mass on the boundary ∂D, we can extend
them to Radon measures on D. We do this because any closed sub-space
of Radon measures on D with uniformly bounded mass is compact (with
respect to the weak topology), and therefore we have subsequential limits
in this space. Secondly, the boxes O ⊂ D with dyadic coordinates generate
the Borel σ-algebra on D. This identifies any subsequential limit as a mea-
sure on D uniquely (and it must have zero mass on the boundary) since we
know that the total masses Mγ

a (D) = Mγ
a (D) converge.

Notice that µγε does not converge in the strong topology of measures. This
follows from the fact that almost surely µγ is not absolutely continuous with
respect to Lebesgue measure.

Proof of Proposition 4.1. — By Remark 4.3, it suffices to prove the con-
vergence statement forMγ

a (O) (with O ⊆ D arbitrary).When γ ∈ [0, 2), we
know that µγε (O)→ µγ(O), in L1 as ε→ 0, where µγε is as in Theorem 3.1.
Thus,

E [µγ(O) | FAa ] = lim
ε→0

E [µγε (O) | FAa ] .

The key is to argue that

(4.1) lim
ε→0

E [µγε (O) | FAa ] = Mγ
a (O).

Then Mγ
a (O) = E [µγ(O) | FAa ] and we can conclude using the martingale

convergence theorem and the fact that
⋃
Aa = D (so that F∞ = σ(Γ)).

To prove (4.1), define Aεa as the ε-enlargement of Aa. By, first, writing
Γ = ΓAa + ΓAa and using that (ΓAa , ρzε) = a for any z ∈ D\Aεa, we have

E

[∫
O\Aεa

eγ(Γ,ρzε) εγ
2/2 dz

∣∣∣∣∣FAa
]

=
∫
O\Aεa

eγa εγ
2/2E

[
e(ΓAa ,ρzε)

∣∣∣FAa] dz

Using (2.2) we recognize that the right hand side is just Mγ
a (O\Aεa).

On the other hand, (ΓAa , ρzε) 6 a for any z, and the conditional variance
of (ΓAa , ρzε) given FAa is less than that of (Γ, ρzε). Thus we can bound

εγ
2/2E

[
e(ΓAa+ΓAa ,ρ

z
ε)
∣∣∣FAa] 6 eγa CR(z,D)γ

2/2
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and it follows (using that CR(z,D) 6 1 for all z ∈ D) that

E

[∫
O∩Aεa

eγ(Γ,ρzε) εγ
2/2 dz

∣∣∣∣∣FAa
]
6 Leb(Aεa)eγa.

Since Aa has zero Lebesgue measure, we have Leb(Aεa) = oε(1). This con-
cludes (4.1) and the proof. �

We now state a more general version of this result, which says that one
can construct the Liouville measure using a variety of local set approx-
imations. The proof is a simple adaptation of the proof above. We say
that a generalized function T on D, for which the circle-average process
Tε(z) := (T, ρεz) can be defined, is bounded from above by K if for all
z ∈ D and ε > 0, we have that Tε(z) 6 K.

Proposition 4.4. — Fix γ ∈ [0, 2) and let (An)n∈N be an increasing
sequence of local sets for a GFF Γ with

⋃
n∈NA

n = D. Suppose that almost
surely for all n ∈ N, we have that Leb(An) = 0 and that ΓAn is bounded
from above by Kn for some sequence of finite Kn. Then for any Borel
O ⊆ D (including O = D), Mγ

n (O) defined by

Mγ
n (O) =

∫
O
eγhAn (z) CR(z;D \An)γ

2/2 dz

is a martingale with respect to {FAn}n>0 and

lim
n→∞

Mγ
n (O) = µγ(O) a.s.

where µγ is the Liouville measure defined by Γ. Thus, almost surely the
measures Mγ

n converge weakly to µγ .

Let us mention two natural sequences of local sets for which this proposi-
tion applies. The first is when we take an, bn ↗∞ and study the sequence
(A−an,bn)n∈N. The second is when we take the sequence (An−a,b)n∈N for
some a, b > 0, where An−a,b is defined by iteration(2). Note that in the case
where a = b = 2λ, we recover the result described in the introduction for
the iterated CLE4.
Observe that whereas our martingale agrees with the one given in [1] for

the case of first-passage sets, for any cases where hAn can take more than
one value, the martingales are in fact different. Yet, we can still identify
the limit of the martingale M̃γ

n (O) of [1], corresponding to an iterated
CLE4 (i.e. (CLEn4 )n∈N.) In this case Aidekon’s martingale converges in

(2) We set A1
−a,b = A−a,b and define An−a,b by sampling the A−a,b of ΓA

n−1
−a,b inside

each connected component of D\An−1
−a,b
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distribution to ηγ(O) := E [µγ(O)|F∞], where µγ is the Liouville measure
and F∞ is the σ-algebra containing only the geometric information from
all iterations of the CLE4. This σ-algebra is strictly smaller than FAn−2λ,2λ

,
which also contains information on the labels of CLE4 in its coupling with
the GFF. It is not hard to see that ηγ is not equal to µγ .

5. Generalizations

In this section, we describe some other situations where an equivalent of
Proposition 4.4 can be proven using the same techniques as the proof of
Proposition 4.1. In the following we do not present any new methods, but
focus instead on announcing the propositions in context, so that they may
be used in other works. We also make explicit the places where the results
are already, or may in the future, be used.

5.1. Non-simply connected domains and general boundary
conditions

Here we consider the case when Γ is a GFF in an n-connected domain
D ⊆ D (for more context see [4]). First, let us note that in this set-up (2.2)
becomes

E
[
ε
γ2
2 exp (γ(Γ, ρεz))

]{
= e−

γ2
2 G̃D(z,z) if d(z, ∂D) > ε,

6 1 if d(z, ∂D) < ε,

where we write GD(z, w) = − log |z − w| + G̃D(z, w), i.e. for any z ∈ D,
G̃D(z, · ), is the bounded harmonic function that has boundary conditions
log(|z − w|) for w ∈ ∂D. Additionally, if we work with local sets A such
that all connected components of A ∪ ∂D contain an element of ∂D, then
Lemma 2.2 will hold. All local sets we refer to here are assumed to sat-
isfy this condition. These facts and assumptions are enough to prove the
following proposition:

Proposition 5.1. — Fix γ ∈ [0, 2) and let (An)n∈N be an increasing
sequence of local sets for a GFF Γ with

⋃
n∈NA

n = D. Suppose that almost
surely for all n ∈ N, we have that Leb(An) = 0 and that ΓAn is bounded
from above by Kn for some sequence of finite Kn. Then for any Borel
O ⊂ D, Mγ

n (O) defined by

Mγ
n :=

∫
O
eγhAn (z)− γ

2
2 G̃D\An (z,z) dz,
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LIOUVILLE MEASURE AS A MULTIPLICATIVE CASCADE 15

is a martingale with respect to {FAn}n>0 and

lim
n→∞

Mγ
n (O) = µγ(O) a.s.

where µγ is the Liouville measure defined by Γ. Thus, almost surely the
measures Mγ

n converge weakly to µγ .

The equivalent of the sets A−a,b and Aa are defined in n-connected do-
mains in [4] and it is easy to see that their iterated versions satisfy the
hypothesis of Proposition 5.1. In particular, the above construction allows
the authors in [4] to prove that the measure ΓAa is a measurable function
of Aa.

5.2. Dirichlet–Neumann GFF

In this section we take Γ to be a GFF with Dirichlet–Neumann boundary
conditions in D+ = D ∩ H. That is, Γ satisfies (2.1), with GD replaced by
GD+ : the Green’s function in D+ with Dirichlet boundary conditions on
∂D and Neumann boundary conditions on [−1, 1]. To be more specific,
we set GD+(x, y) = GD(x, y) + GD(x, y), with GD as in Section 2. Then
GD+(x, y) ∼ log(1/|x− y|) as x→ y in the interior of D+ and GD+(x, y) ∼
2 log(1/|x− y|) when y ∈ (0, 1).
Let A be a closed subset of D+. Suppose that Γ is a Dirichlet–Neumann

GFF in D+\A with Neumann boundary conditions on [−1, 1]\A and Dirich-
let boundary conditions on the rest of the boundary. Let z ∈ [−1, 1] and
define %εz to be the uniform measure on ∂B(z, ε) ∩ D+. Then, in this set-
up (2.2) becomes

(5.1) E
[
εγ

2/4 exp
(γ

2 (Γ, %εx)
)]{= CR(x;D\Ă)γ2/4 if d(z, ∂(D\Ă)) > ε,

6 1 if d(z, ∂(D\Ă)) < ε.

Here we set Ă := A ∪ Ā for Ā = {z ∈ C : z ∈ A}.
There is also a notion of local sets for this Dirichlet–Neumann GFF.

We say that (Γ, A,ΓA) describes a local set coupling if, conditionally on
(A,ΓA), ΓA := Γ − ΓA is a GFF with Neumman boundary conditions on
[−1, 1]\A and Dirichlet on the rest. For connected local sets such ∂D+ ∪A
is connected, Lemma 2.2 still holds (by the same proof given for the 0-
boundary GFF).
We are interested in the boundary Liouville measure on [−1, 1]. Take

γ < 2, ε > 0 and a Borel set O ⊆ [−1, 1]. We define the approximate
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boundary Liouville measures as follows:

υγε (O) := εγ
2/4
∫
O

exp
(γ

2 (Γ, %εx)
)

dx,

where here dx is the Lebesgue density on [−1, 1]. It is known (see [8, 13])
that υγε → υγ in L1 as ε → 0. Moreover, it is also easy to see that υγ is
a measurable function of F[−1,1]. This just comes from the fact that the
Dirichlet GFF contains no information on the boundary. Thus, we have all
the necessary conditions to deduce the following Proposition using exactly
the same proof as in Section 4.

Proposition 5.2. — Fix γ ∈ [0, 2) and let (An)n∈N be an increasing
sequence of local sets for a GFF Γ with

⋃
n∈NA

n ⊇ [−1, 1]. Suppose that
almost surely for all n ∈ N, we have that Leb[−1,1](An) = 0 and that ΓAn
restricted to An is bounded from above by Kn for some sequence of finite
Kn. Then for any Borel O ⊆ [−1, 1], Mγ

n (O) defined by

Mγ
n (O) :=

∫
O
e
γ
2 hAn (z) CR(z;D\Ăn)

γ2
4 dz

is a martingale with respect to {FAn}n>0 and

lim
n→∞

Mγ
n (O) = υγ(O) a.s.

where where µγ is the boundary Liouville measure defined by Γ. Thus,
almost surely the measures Mγ

a converge weakly to υγ .

It has recently been proven in [26] that sets satisfying the above hypoth-
esis do exist, and that they can be used to couple the Dirichlet GFF with
the Neumman GFF. Let us describe some concrete examples of these sets.
If Γ is a Dirichlet–Neumann GFF, then in [26] it is shown that there exists
a (measurable) thin local set Ã(Γ) of the GFF such that:

• Ã(Γ) has the law of the trace of an SLE4(0;−1) going from −1 to 1
• hÃ(Γ) is equal to 0 in the only connected component of D+\Ã(Γ)

whose boundary intersects ∂D ∩H
• in the other connected components, hÃ(Γ) is equal to ±2λ, where
conditionally on Ã(Γ) the sign is chosen independently in each com-
ponent.

There are two interesting sequences of local sets we can construct us-
ing this basic building-block. The first one is the boundary equivalent of
(An−2λ,2λ)n∈N, and the second is the boundary equivalent of (A2λn)n∈N. The
first one is also described in [26, Section 3]. The construction goes as follows:
choose A1 = Ã(Γ) and construct An by induction. In the connected compo-
nents O of D\An that contain an interval of R, we have that ΓAn restricted
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to O is a Dirichlet–Neumann GFF (with Neumann boundary condition on
R ∩ ∂O). Thus, by conformal invariance we can explore the set Ã(Γ |O) in
each such component O. We define An+1 to be the closed union of An with
Ã(Γ |O) over all explored components O. Note that hAn ∈ {2λk} where
k ranges between −n and n. It is also not hard to see that An is thin
(it follows from the fact that hA ∈ L1(D\A) and that for any compact set
K ⊆ D+ the Minkowski dimension of An∩K is a.s. equal to 3/2, see e.g. [31,
Proposition 4.3]). Thus we deduce that ΓAn 6 2λn. Additionally, note that
by adjusting [23, Lemma 6.4], we obtain from the construction of A1 that
for any z ∈ (−1, 1) the law of 2(log(CR−1(z,D\Ă1)) − log(CR−1(z,D)) is
equal to the first time that a BM exits [−2λ, 2λ]. It follows that for all
n ∈ N, LebR(An ∩ [−1, 1]) = 0 and also

⋃
n∈NA

n ⊇ [−1, 1]. Hence we see
that the sequence (An)n∈N satisfies the conditions of Proposition 5.2.
For the second sequence of local sets, take B1 = Ã(Γ) and define Bn+1

to be the closed union of Bn with all Ã(Γ |O) such that O is a connected
component of D\Bn, hBn |O6 2λ and ∂O contains an interval of R. De-
note A1(Γ) the closed union of all the Bn. Due to the fact that Bn are
BTLS with hBn 6 2λ on [−1, 1], we have that ΓA1 restricted to [−1, 1] is
smaller than or equal to 2λ. Additionally, note that 2(log(CR−1(z,D\Ă1))−
log(CR−1(z,D)) is distributed as the first time a BM hits 2λ. Now, we iter-
ate to define An(Γ) as the closed union of An−1(Γ) and A1(Γ |O), where O
ranges over all connected components of D+\A(n−1) containing an interval
of R. The sequence (An)n∈N satisfies the condition of Proposition 5.2. Note
that in this case the martingale simplifies and contains only information
on the geometry of the sets An:

Mγ
n := eγ2λn

∫
O
CR(z;D\Ăn)γ

2/4dz.

The fact that this martingale is a measurable function of An allows us to
use the same techniques as in [4] to prove that the measure 2λn− ΓAn on
R is a measurable function of An.
It is also explained in [26] that the sets An we have just constructed, and

the definition of the boundary Liouville measure using them, might help to
reinterpret an SLE-type of conformal welding first studied in [33].

6. Critical and supercritical regimes

In this section it is technically simpler to restrict ourselves to the simply
connected case and to study a special family of sequences of local sets.
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Namely, we assume that our sets An are formed by iterating a first passage
set Aa for some a > 0, in other words An = Aan. With some extra work,
the results can be seen to hold in a more general setting.
We first show that the martingales defined in Section 4 converge to zero

for γ > 2. Then, in the critical case γ = 2, we define a derivative martingale
and show it converges to the same measure as the critical measure µ′2
from [11, 12, 25], and 1/2 times the critical measure D̃∞ from [1]. Finally,
we show that we can also construct the critical measure using the Seneta–
Heyde rescaling (analogous to the main theorem of [3].) More precisely, for
all Borelian O ⊆ D, we have that

√
anM2(O, An) converges in probability

to 2√
π
µ′2(O) as n→∞.

6.1. The martingale Mγ
n vanishes in the (super)critical regime.

Lemma 6.1. — Set γ > 2 and An = Aan as above. ThenMγ
n → 0almost

surely.

Remark 6.2. — In fact, our proof of Lemma 6.1 works for any sequence
An of local sets such that

⋃
nAn = D, and that are formed by iteration.

That is, A1 = A(Γ) is some measurable local set coupled with the GFF Γ,
and An+1 is formed from An by, in each component O of D \An, exploring
A(ΓAn)

In [1], Aïdekon also considers the critical and supercritical cases for
his iterated loop measures. In particular, from his results one can obtain
Lemma 6.1 directly. We include a proof (that works in the more general set-
ting of Remark 6.2) for completeness, and to introduce a change of measure
technique that will be crucial in later arguments. The proof follows from
a classical argument, stemming from the literature on branching random
walks [21], but is based on the local set coupling with the GFF.

Proof. — From (2.2) and the iterative way that we have constructed An,
we see that if Mγ

0 (D) =
∫
D CR(z,D)γ2/2 dz, then Mγ

n (D)/Mγ
0 (D) is a mean

one martingale. Let us define a new probability measure P̂ via the change
of measure

(6.1) dP̂
dP

∣∣∣∣∣
FAn

= Mγ
n (D)

Mγ
0 (D) .

It is well known, see for example [14, Theorem 5.3.3], that in order to
show that Mγ

n (D) → 0 almost surely under P, it suffices to prove that
lim supnMγ

n (D) = +∞ a.s. under P̂.
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To show this we actually consider a change of measure on an enlarged
probability space. Define a measure P∗ on (Γ, (An)n, Z) by sampling
(Γ, (An)n) from P and then independently, sampling a random variable
Z ∈ D with law proportional to Lebesgue measure. Note that under P∗ the
process

ξn = eγhAn (Z)−γ2/2 log CR−1(Z,D\An)

is a martingale with respect to the filtration F∗An = FAn ∨ σ(Z). Thus we
can define a new probability measure P̂∗ by

(6.2) dP̂∗

dP∗

∣∣∣∣∣
F∗
An

:= ξn
E∗[ξ0]

Then if P̂ is the restriction of P̂∗ to FAn , P̂ and P satisfy (6.1). There-
fore it suffices to prove that under P̂∗ and conditionally on Z, we have
lim supnMγ

n (D) = +∞ almost surely.
Now, for any simply-connected domainD we have d(z, ∂D)6CR(z,D)6

4d(z, ∂D) by Köebe’s quarter theorem. Using the triangle inequality we
therefore see that for any z′ with d(z, z′) 6 CR(z,D)/2, we have that
CR(z,D) 6 16 CR(z′, D). Clearly, we can lower boundMγ

n (D) by theMγ
n−

mass in the disk of radius CR(Z,D)/2 around Z. Thus by the above com-
ments, it suffices to prove that under P̂∗ and conditionally on Z, almost
surely

(6.3) lim sup
n

eγhAn (Z)−(γ2/2+2) log CR−1(Z,D\An) = +∞.

To do this, we claim that under the conditional law P̂∗(·|Z)

hAn(Z)− γ log CR−1(Z,D \An)

is a random walk with mean zero increments (starting from −γ log CR−1(Z,
D \An). Notice that (6.3) then follows, as γ2 > γ2/2 + 2 if γ > 2.
To prove the claim, observe that the marginal law of Z under P̂∗ is

proportional to CR(z,D)γ2/2. Moreover, the conditional law on the field
can be written as

P̂∗(dΓ|Z) = eγhAn (Z)− γ
2

2 (log CR−1(Z,D\An)−log CR−1(Z,D)) P(dΓ).

As for all γ we have that

E
[
eγhAn (Z)− γ

2
2 (log CR−1(Z,D\An)−log CR−1(Z,D))

]
= 1,
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by dominated convergence we can differentiate with respect to γ to obtain
that the expected value of

(hAn(Z)−γ log CR−1(Z,D\An))eγhAn (Z)− γ
2

2 (log CR−1(Z,D\An)−log CR−1(Z,D))

is equal to 0. This says precisely that hAn(Z)− γ log CR−1(Z,D \An) is a
zero mean random walk under P̂∗( · |Z). �

Remark 6.3. — Using the same technique but instead differentiating
twice with respect to γ, we can also calculate the variance of the incre-
ments of hAn(Z)− γ log CR−1(Z,D \An) under P̂∗(·|Z). In the case γ = 2
the variance is equal to 1/2.

6.2. The derivative martingale in the critical regime

We now show the convergence of the derivative martingale (when γ = 2,
defined below) that is built from the sets An = Aan for a > 0. For any
Borel set O ⊆ D and local set A, we define

Dγ(O, A)

:=
∫
O

(
−hA(z) + γ log CR−1(z,D \A)

)
eγhA(z) CR(z;D \A)γ

2/2 dz.

The rest of this section is devoted to proving the following proposition.

Proposition 6.4. — Assume that An is given by Aan for some a > 0.
Then for any Borel O ⊂ D (including O = D) we have that D2(O, An) is
a martingale and converges almost surely to a finite, positive limit D∞(O)
as n → ∞. In particular the signed measures D2(O, An) converge weakly
to a limiting measure that is independent of the choice of a > 0 and agrees
with the critical measure µ′2 defined in [11, 12], and 1/2 times the critical
measure D̃∞ defined in Theorem 1.3 of [1]. In particular we confirm that
D̃∞ = 2µ′2.

Remark 6.5. — With some extra work, one can also obtain the above
result when An is formed by iterating A−a,a for any a > 0. Intuitively,
this just follows from the explicit relationship between these sets and the
corresponding first passage sets (Aan)n, described in Lemma 2.5.

The fact that the above martingales converge (when An = Aan, which
we stick to from now on) and that their limit agrees with (1/2)D̃∞, fol-
lows directly from [1]. Indeed, in the case a = 2λ, observe that for any
O ⊆ D, twice the derivative martingale 2D2(O, A2λn) is equal to D̃n(O)
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defined in (1.3) of [1] (see proof of Corollary 4.2). Thus, we know from
Theorem 1.3 of [1] that when we iterate A2λ, the associated sequence of
measures 2D2( · , A2λn) converges weakly to D̃∞. Moreover, it also follows
from Theorem 1.3 of [1] that for all dyadic s > 0, 2D2( · , A2λsn) converges
to the same limit. Doob’s maximal inequality then implies that there exists
a modification of 2D2( · , At) that also converges to D̃∞ as t → ∞. This
clearly implies the convergence of our derivative measures to (1/2)D̃∞ for
any a > 0.
Now we would like to connect the measures D̃∞ and µ′. Concentrating

on the case a = 1, we set

Dn := 2D2(0, An),

where we have included the factor 2 for consistency with [1]. The immedi-
ate difficulty is that the martingales Dn(O) are not uniformly integrable
(U.I.). To solve this issue we work with a certain mollified and localized
approximation of µ′2(O). Recall from Section 3.2 that the mollified mea-
sures νε defined in (3.1) converge weakly in probability as ε→ 0 to µ′2. To
ensure uniform integrability, we work with a localized version that we call
νβε . This family is U.I. for any β (as shown in [25, Proposition 3.6]) and,
moreover, there almost surely exists a β0 such that νβε = νε for all β > β0.
We then roughly follow the strategy of the proof of Proposition 4.1, and
show that the conditional expectation νβε w.r.t. FAn is approximately equal
to Dn(O)/2.

Proof of Proposition 6.4. — Consider the circle-average approximate
measures νε from (3.1), and choose a sequence εk → 0 such that νε → µ′2
almost surely. From now on whenever we write ε → 0, it means that we
are converging to 0 via (εk)k∈N. We set, for fixed O ⊆ D,

νβε (O) =
∫
O

(−Γε(z) + 2 log(1/ε) + β)

1{Tβ(z)6ε}1{ε6d(z,∂D)} e2Γε(z)−2 log(1/ε) dz

where Tβ(z) = sup{ε 6 d(z, ∂D) : Γε(z) − 2 log(1/ε) 6 −β}. It is shown
in [25, Proposition 3.6] that νβε (O) is uniformly integrable for fixed β > 0.
Additionally, if we define

Cβ := {−Γε(z) + 2 log(1/ε) + β > 0 for all z ∈ D, 0 < ε 6 d(z, ∂D)},

then P(Cβ) = 1− o(1) as β →∞ thanks to [16, Theorem 6.15].
The strategy is to prove that for

(6.4) τβ := inf
n

{
n∈N : inf

z∈D\Aan
−hAan(z)+2 log CR−1(z,D \Aan)6−β

}
,
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the almost sure limit

(6.5) lim
β→∞

lim
n→∞

lim
ε→0

E
[
νβε (O) | FAn

]
1{τβ=∞}

exists and is equal to both µ′2(O) and 1
2D̃∞(O) almost surely.

Let us first show that (6.5) is equal to µ′2(O). — Observe that since
νβε (O) is uniformly integrable, we have by Fatou’s and reverse Fatou’s
lemma that, if the limit in ε exists (we will show that it does in the next
step)

E
[
lim inf
ε→0

νβε (O) | FAn
]
6 lim
ε→0

E[νβε (O) | FAn ] 6 E
[
lim sup
ε→0

νβε (O) | FAn
]
.

Taking the limit as n, β →∞ we obtain that

lim
β→∞

lim inf
ε→0

νβε (O) 6 lim
β→∞

lim
n→∞

lim
ε→0

E[νβε (O) | FAn ] 6 lim
β→∞

lim sup
ε→0

νβε (O).

However, since νβε (O) = νε(O) on the event Cβ , and almost surely 1Cβ ↑ 1
as β → ∞, the right and left hand sides of the above two expressions are
equal to µ′2(O).
Now, we only need to prove that almost surely 1{τβ=∞} → 1 as β →∞,

which is due to the fact that

(6.6) inf
z∈D

inf
n∈N

(
−2an+ 4 log CR−1(z,D \Aan)

)
> −∞.

This just follows from Lemma 6.1 and its proof: indeed, as in the
proof, one can observe that for any z and any n, we have that M2

n(D) >
e2an−4 log CR−1(z,D\Aan). Hence as M2

n(D) → 0 by Lemma 6.1, we obtain
(6.6). Thus, (6.5) is equal to µ′2(O).

We now show that (6.5) is equal to 1
2D̃∞(O). — Similarly to the proof

of Proposition 4.1 we write E[νβε (O) | FAn ] as the sum of:

E1(n, β, ε) :=
∫
O\Aεn

EAn
[
(−Γε(z)+2 log(1/ε))1{Tβ(z)6ε} e2Γε(z)−2 log(1/ε)

]
dz,

E2(n, β, ε) :=
∫
O∩Aεn

EAn
[
(−Γε(z)+2 log(1/ε))1{Tβ(z)6ε} e2Γε(z)−2 log(1/ε)

]
dz,

E3(n, β, ε) := β

∫
O
EAn

[
1{Tβ(z)6ε}1{ε6d(z,∂D)} e2Γε(z)−2 log(1/ε)

]
dz.

As before Aεn denotes the ε-enlargement of An and for shortness of notation
we set EAn( · ) = E [ · |FAn ].

We first show that the terms E3(n, β, ε) and E2(n, β, ε) are negligible.
For E3(n, β, ε), we use the same calculation as in (4.1) to see that the limit
in ε is less than or equal toMn which we know by Lemma 6.1 converges to 0
almost surely as n→∞. For E2(n, β, ε), on the one hand, by Definition 2.4
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of An, we have that (ΓAn , ρεz) 6 n. On the other hand, for any z ∈ Aεn we
have that conditionally on An, the variance of ΓAnε (z) is uniformly bounded.
One way to see this is to write the variance explicitly using the Green’s
function, and to observe that the Green’s function G(z, w) is uniformly
bounded for d(w, z) > ε/2. This implies that, for fixed n, β, the integrand of
E2(n, β, ε) is of order ε2 log(1/ε) uniformly in z and hence E2(n, β, ε)→ 0
as ε→ 0.

We now deal with E1(n, β, ε). Observe that if ε 6 d(An, z) then
(ΓAn , ρεz) = n. Additionally, due to the Markov property of the GFF and
an explicit computation, we have that conditionally on FAn , i.e., under the
probability PAn ,(

−n− ΓAnδ (z) + 2 log(1/δ)
)

1{Tβ(z)6δ} e2n+2ΓAn
δ

(z)−2 log(1/δ)

is a (reverse-time) martingale for 0 < δ 6 δn(z) := d(z, ∂D ∪An).
Thus, we have that E1(n, β, ε) is equal to∫
O\Aεn

EAn
[
(−n− ΓAnδn(z)(z) + 2 log(1/δn(z)))

1{Tβ(z)6δn(z)} e2n+2ΓAn
δn(z)(z)−2 log(1/δn(z)) dz

]
.

Since the integrand does not depend on ε, the limit in ε exists almost surely
and simply yields the integral over the whole of O \An.

Now, using that 1{Tβ(z)6δ} = 1−1{Tβ(z)>δ}, we rewrite limε→0E
1(n, β, ε)

as a difference between

(6.7)
∫
O\An

EAn
[
(−n− ΓAnδn(z)(z) + 2 log(1/δn(z)))

e2n+2ΓAn
δn(z)(z)−2 log(1/δn(z))

]
dz

and

(6.8)
∫
O\An

EAn
[
(−n− ΓAnδn(z)(z) + 2 log(1/δn(z)))

1{Tβ(z)>δn(z)} e2n+2ΓAn
δn(z)(z)−2 log(1/δn(z))

]
dz.

First notice that (6.7) is equal to Dn(O)/2. This follows by a standard
Gaussian calculation, as ΓAnδn(z) is a mean zero normal random variable
under PAn with variance − log δn(z) + log CR(z,D \ An). Therefore, we
need only show that the random variable given by (6.8) converges to 0 on
the event {τβ =∞}, as n→∞ and then β →∞.
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To show this, further decompose (6.8) as a sum of

(6.9)
∫
O\An

EAn
[(
−ΓAnδn(z)(z)+2 log CR(z,D\An)

δn(z)

)
1{Tβ(z)>δn(z)} e2ΓAn

δn(z)(z)
]

e2n−2 log(1/δn(z)) dz.

and

(6.10)
∫
O\An

e2n−2 log(1/δn(z))(−n+ 2 log CR−1(z,D \An))

EAn
[
1{Tβ(z)>δn(z)} e2ΓAn

δn(z)(z)
]

dz.

Note that δn(z) 6 CR(z,D \ An) 6 4δn(z). This means that ΓAnδn(z)(z)
has bounded variance under EAn , and so we see that (6.9) is bounded by
a constant times M2

n(O), which goes to 0 by Lemma 6.1.
Finally, observe that on the event {τβ = ∞}, we have that −n +

2 log CR−1(z,D \ An) + β > 0 for all z ∈ O. Also, by Cauchy–Schwarz
and the fact that ΓAnδn(z)(z) has bounded variance under EAn , we have

EAn
[
1{Tβ(z)>δn(z)} e2ΓAn

δn(z)(z)
]
6 cPAn(Ccβ)1/2.

This implies that on the event {τβ = ∞} the absolute value of (6.10) is
upper bounded by

c′(|Dn(O)|/2 + 2βMn(O))PAn(Ccβ)1/2.

But the limit of the RHS as n→∞ is equal to 1
2D̃∞(O)1Cc

β−2
. Since this

tends to 0 as β →∞, we can conclude. �

6.3. Seneta–Heyde rescaling.

Finally, we show that one can also perform a so-called Seneta–Heyde
rescaling to construct the critical Liouville measure using local sets. In fact
we prove an even stronger result that will serve us in a follow-up paper,
where we prove that the scaled subcritical measures (2− γ)−1µγ converge
to 2µ′2. This result is known in the setting of multiplicative cascades [22],
and was conjectured in [11] for the Liouville measure.
The moral of the proof can be summarised as follows: our set-up allows us

to rather easily transfer the proofs from the multiplicative cascades setting
to our context. In particular, the proof in this section follows very closely
the proof of [3], and its extension in [22]. Not only is the set-up of the proof
exactly the same, but also technical details can be easily translated to our
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setting. We have, however, aimed to make this section self-contained and
have simplified and shortened some of the technical steps.
The main result of this section is the so called Seneta–Heyde rescaling.

Let M2
n be defined as in Proposition 4.1 (with a = 1 and γ = 2), i.e.

M2
n(dz) = e2n−2 log CR−1(z,D\An) dz.

We then see that there is a suitable rescaling of M2
n that converges to the

derivative measure µ′2:

Theorem 6.6 (Seneta–Heyde Rescaling). — For all Borelian O ⊆ D
(including O = D),

√
nM2(O, An) converges to 2√

π
µ′2(O) in probability as

n→∞. In particular, we have
√
nM2

n →
2√
π
µ′2

weakly in probability as n→∞.

In fact this is a direct consequence of a stronger and more general state-
ment, that will serve us in a follow-up work. First let

Dn(O) := 2D2(O, An)

as in Section 6.2.

Theorem 6.7. — Suppose that F : R → R+ is a positive, continuous
and bounded function, and let

KF
n (dz) := e2n−2 log CR−1(z,D\An) F

(
−2n+ 4 log CR−1(z,D \An)√

n

)
dz.

Then for any Borelian O ⊆ D (inlcuding O = D) we have
√
nKF

n (O)
Dn(O) →

√
1
π
E[F (

√
2R1)]

in probability as n→∞, where R1 has the law of a Brownian meander at
time 1.

Indeed, in order to deduce Theorem 6.6 from this general statement we
first take F = 1 to conclude that

√
nM2

n(O)/Dn(O)→
√

1/π in probabil-
ity, as n → ∞. As by Proposition 6.4 we also have that Dn(O) → 2µ′(O)
almost surely, Theorem 6.6 follows by invoking Remark 4.3.
It is convenient to work (we will later explain why) under a certain

family of rooted measures, that heuristically amount to picking a typical
point from the critical measure.
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6.3.1. Another family of rooted measures

Recall that in Section 6.1 we already made use of certain rooted measures,
one for each value of γ, obtained by weighting our original measure by the
martingale Mγ

n .
To prove Theorem 6.7, we will define a different family Qη of rooted

measures, using certain martingales (D̃η
n)η>0 (defined below) as a weighting

instead. These martingales provide truncated approximations of the critical
measure, with η > 0 the truncation parameter.

We already saw in the proof of Lemma 6.1 that if (Γ, Z) has the law
P̂∗(dΓ,dz) defined in (6.2), then the process

Sn(Z) := −2n+ 4 log CR−1(Z,D \An)

is a random walk with mean-zero increments under the conditional law
P̂∗(dΓ|Z). Moreover, this conditional law is that same as that of Sn under
E, but weighted by

e2n−2 log CR−1(Z,D\An)+2 log CR−1(Z,D) .

By conformal invariance of the GFF, this implies that the conditional
law of (Sn − S0) under P̂∗(dΓ|Z) does not depend on Z (although S0 =
4 log CR−1(Z,D) clearly does.)
Now, let us define, as in [1],

D̃η
n(O) :=

∫
O
h1 (Sn(z) + 2η) 1Eη(n,z)e

2n CR(z;D \An)2 dz,

where Eη(n, z) := {Sm > −2η for all m 6 n}, and h1 is the renewal func-
tion associated with the random walk (Sn − S0) under P̂∗(dΓ |Z):

(6.11) h1(u) := P̂∗
 ∞∑
j=0

1{infi6j−1(Si−S0)>Sj−S0>−u}

∣∣∣∣∣∣Z
 > 1, u > 0.

This is a deterministic function of u (in particular, not depending on Z) by
the discussion above. We have collected further background and properties
of the renewal function in Appendix A.
Proposition 3.2 of [1] implies that for all η > 0, D̃η

n(O) is a uniformly
integrable positive martingale with respect to (FAn)n and our initial prob-
ability measure P. Hence, we can define a new probability measure Qη by
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setting(3)

(6.12) dQη
dP
∣∣
FAn

:= D̃η
n(O)

D̃η
0(O)

.

Again we extend this to a rooted measure on the field Γ plus a distinguished
point Z by setting Q∗η(dΓ,dz) restricted to F∗An = FAn∨σ(Z) to be equal to

h1(Sn(z) + 2η) e2n−2 log CR−1(z,D\An) 1Eη(z,n)
1O(z)
D̃η

0
dz P[dΓ].

We make the following observations, which follow from direct calcula-
tions, together with the Markov property of the renewal function (A.1):

(1) The marginal law of Z under Q∗η is proportional to

h1(4 log CR−1(z,D) + 2η) CR(z,D)21O(z)dz.

(2) The marginal law of the field Γ under Q∗η is given by Qη.
(3) The conditional law of Z given the field Γ has density

D̃η
n(O)−1h1(Sn(z) + 2η) e2n−2 log CR−1(z,D\An) 1Eη(n,z)1{z∈O}

with respect to Lebesgue measure.
(4) Finally, write Q∗η,z = Q∗η[ · |Z = z] for the law of Γ given the point

Z = z. The law of the sequence (An)n under this measure can be
described as follows. First sample A1 with law weighted by
h1(S1(z) + 2η)
h1(S0(z) + 2η)1Eη(z,1) e2−2 log CR−1(z,D\A1)+2 log CR−1(z,D) .

Then, given Ak for any k > 1, construct an independent copy of
(An)n inside each component of D \ Ak that does not contain the
point z. Inside the component containing z, let us call this Bk,
construct the components of Ak+1 ∩ Bk by weighting their laws by

h1(Sk+1(z) + 2η)
h1(Sk(z) + 2η) 1Eη(z,k+1) e2−2 log CR−1(z,D\Ak+1)+2 log CR−1(z,D\Ak) .

This defines the law of the sets An, and hence by iteration, the law
of Γ.

It then follows that for any n the law of

(Sk(z))16k6n := (−2k + 4 log CR(z,D \Ai))16k6n

(3) Note that, by definition, the measure Qη also depends on the set O. This is just
a technical convenience, and we omit the dependence from the notation, as it should
always be contextually clear which O we are using.
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under Q∗η,z is the same as its law under P̂∗[ · |Z = z], but weighted by

(6.13) h1(Sn(z) + 2η)
h1(S0(z) + 2η) 1Eη(z,n).

By the classical theory of Doob h-transforms this weighting is the same as
conditioning (Sn(z))n to stay above −2η (see for example [3, Fact 3.2(iii)]).

6.3.2. Proof of Theorem 6.7

In order to prove Theorem 6.7 we would like to use a first and second
moment method to show that the random variables

√
nKF

n (O)/Dn(O) con-
verge to a constant. However, these moments might explode a priori. Thus,
we truncate the random variables: turning Dn into D̃η

n and also adding the
indicator 1{Eη(n,z)} in the definition of KF

n . Once we have done this, it ac-
tually turns out to be more convenient to work under the rooted measure
in order to study the truncated ratio. This is partly because, under the
rooted measure, the ratio can be naturally written as a functional of the
marked point Z.

So, we set

K̃F,η
n (O) :=

∫
O
e2n−2 log CR−1(z,D\An)F

(
Sn(z)√

n

)
1Eη(z,n) dz.

As mentioned above, the proof of Theorem 6.7 follows by studying the
behaviour of

√
nK̃F,η

n /D̃η
n under the rooted measure Qη. More precisely,

we establish the following proposition:

Proposition 6.8. — For any η > 0 and all Borel O ⊆ D (including
O = D)

√
n
K̃F,η
n (O)
D̃η
n(O)

→ 1
c0
√
π
E
[
F (
√

2R1)
]

in Qη-probability as n → ∞, where c0 ∈ (0,∞) is such that h1(u)/u →
c0 as u→∞, see (A.2), and R1 is a Brownian meander at time 1.

Before proving this proposition, let us shortly explain how it implies the
theorem. Let us stress once again that we have set things up so that we
can very closely follow the proof of Theorem 1.1 in [3].

Proof of Theorem 6.7 assuming Proposition 6.8. — To see heuristically
why this proposition suffices, observe that thanks to (6.6), almost surely
there is a (random) η0 such that whenever η > η0, the event Eη(z, n) holds
for all n ∈ N and z ∈ D. This means that for all η > η0, we have

K̃F,η
n (O) = KF

n (O) and D̃η
n(O) n→∞∼ c0Dn(O).
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Moreover, we have seen that D̃η
n(O) converges almost surely to a strictly

positive limit as n → ∞ and then η → ∞. It follows that convergence
in probability under P and under Qη are comparable when η is large,
implying Theorem 6.7. For an interested reader, the details are given in
Appendix B. �

To prove Proposition 6.8, we first treat the case when O is compactly
supported in D and then in the end discuss how to extend this to sets
intersecting the boundary of D. This is to separate certain technicalities
arising when working near the boundary.
Proof of Proposition 6.8 for O compactly supported in D. — We may

assume without loss of generality that O ⊂ rD for some r < 1. From now
on, we also omit the argument O in K̃F,η

n (O) and D̃η
n(O) etc., in order to

keep notations compact.
Define θ = 1/(c0

√
π). The idea is to control the first and second moments

of K̃F,η
n /D

η

n as n→∞. More precisely, to show that:

Q∗η

[
K̃F,η
n

D̃η
n

]
=
θE
[
F (
√

2R1)
]

√
n

+ o

(
1√
n

)
; and(6.14)

Q∗η

(K̃F,η
n

D̃η
n

)2
 6 (θE

[
F (
√

2R1)
]
)2

n
+ o

(
1
n

)
(6.15)

as n→∞. Note that we have written Q∗η rather than Qη here, but by ob-
servation (1) above, this makes no difference to the expectations (since the
random variables inside are measurable with respect to FAn). These esti-
mates then prove Lemma 6.8, as they show that the variance of

√
nK̃F,η

n /D̃η
n

converges to 0 with n.
The key observation for the proofs of (6.14) and (6.15) lies in rewriting

the moments using the rooted measure. Indeed, by observation (3) above,
we can write:

(6.16) K̃F,η
n

D̃η
n

= Q∗η
[
F (Sn(Z)/

√
n)

h1(Sn(Z) + 2η)

∣∣∣∣FAn] .
The advantage of this is that the functionals inside the expectation are
just real-valued functions. Moreover, we know precisely the distribution of
Z under Q∗η. This allows us to directly calculate the first moment, and to
control the second moment.

First moment estimate. — From the previous equation it follows that

(6.17) Q∗η

[
K̃F,η
n

D̃η
n

]
=
∫
z

Q∗η,z
[
F (Sn(z)/

√
n)

h1(Sn(z) + 2η)

]
Q∗η[dz]
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where Q∗η,z represents the conditional law Q∗η( · |{Z = z}), and Q∗η[dz] the
marginal density of Z under Q∗η as in Section 6.3.1.

Now, by (6.13) we have for any z ∈ O that

Q∗η,z
[
F (Sn(z)/

√
n)

h1(Sn(z) + 2η)

]
=

P̂∗
(
F (Sn(z)/

√
n)1Eη(n,z) | {Z = z}

)
h1(4 log CR−1(z,D) + 2η)

.

Applying (A.4) we see that this is equal to θ(1 + o(1))/
√
n times

P̂∗z
(
F

(
Sn(z)− S0(z) + 4 log CR−1(z,D)√

n

) ∣∣∣∣Eη(n, z)
)

Here we have written P̂∗z for the law P̂∗( · | {Z = z}), but remember that
the law of Sn(z) − S0(z) under P̂∗z does not actually depend on z: it is
a random walk with mean zero increments and variance equal to 2 (see
Remark 6.3). This is now an expression we can deal with easily, because it is
well known [9] that a mean zero bounded variance random walk conditioned
to stay above some level converges to a Brownian meander. Thus for every
z ∈ O and η > 0:

(6.18) n−1/2(Sbt/nc(z)− S0(z))06t6n under P̂∗z ( · |Eη(n, z))

converges in distribution to (
√

2Rt)06t61 as n→∞, where R is a Brownian
meander on [0, 1]. Hence, using continuity and boundedness of F , the inte-
grand of the right-hand side of (6.17) is equal to θ(1+o(1))E[F (

√
2R1)]/

√
n

for every z ∈ O. Note that the o(1) is uniform over z ∈ O since S0(z) =
4 log CR−1(z,D) is uniformly bounded over z ∈ rD. By dominated conver-
gence, we therefore obtain (6.14).
Second moment estimate. — We now move to the second moment esti-

mate. The idea is as follows. Using (6.16) we can write

(6.19) Q∗η

(K̃F,η
n

D̃η
n

)2
 = Q∗η

[
K̃F,η
n

D̃η
n

F (Sn(Z)/
√
n)

h1(Sn(Z) + 2η)

]

Intuitively, the ratio K̃F,η
n /D̃η

n will not depend too much on the final itera-
tions of An, i.e. it depends only on Am form 6 kn for some kn � n. On the
other hand the random walk Sn(Z), doesn’t depend too much on the initial
iterations of An, i.e. on Am for m 6 k′n for k′n � n. Thus, one may hope to
argue that both terms in the right-hand side of (6.19) are asymptotically
independent. Making this precise and showing that in fact one can really
take kn = k′n is the content of the rest of the section. It will require quite a
few technical steps, but luckily for us, these can be transferred with minor
modifications from [3].
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The first step is to get a rough upper bound of the right order:

Lemma 6.9.

(6.20) Q∗η

(K̃F,η
n

D̃η
n

)2
 = O

(
1
n

)
.

Proof. — Lemma 6.9 Using (6.16) and Jensen’s inequality, one sees that

Q∗η

(K̃F,η
n

D̃η
n

)2
 6 ‖F‖2∞Q∗η

[
1

[h1(Sn(Z) + 2η)]2

]

6 ‖F‖2∞
∫
z

Q∗η,z
[

1
[h1(Sn(z) + 2η)]2

]
Q∗η [dz] .(6.21)

Then, using the fact that h1(Sn(z) + 2η) > R(1 +Sn(z) + 2η) by (A.3), we
can write

Q∗η,z
[

1
[h1(Sn(z)+2η)]2

]
6 R−2P̂∗z

(
1

1+Sn(z)+2η

∣∣∣∣Eη(n, z)
)
P̂∗z(Eη(n, z))

for all z. Applying (A.4), as in the proof of (6.14), we see that

P̂∗z(Eη(n, z)) = θ(1 + o(1))√
n

where again, since O ⊂ rD, the o(1) term is uniform over z ∈ O. By the
convergence of n−1/2(Sbt/nc(z)−S0(z)) to a Brownian meander, (6.18), we
also see that the first term is order n−1/2, uniformly over z ∈ O. Plugging
into (6.21) and applying dominated convergence, we obtain the lemma. �

This means that we need only prove the second moment bound on events
of high probability. More precisely:

Lemma 6.10. — Suppose we can find a sequence of events En with
Q∗η(En)→ 1 as n→∞, and such that

(6.22) Q∗η

[
K̃F,η
n

D̃η
n

1EnF (Sn(Z)/
√
n)

h1(Sn(Z) + 2η)

]
6

(θE
[
F (
√

2R1)
]
)2

n
+ o

(
1
n

)
.

Then the second moment bound (6.15) holds.

The proof of this lemma is also relatively direct:
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Proof of Lemma 6.10. — By (6.16) we can write

Q∗η

(K̃F,η
n

D̃η
n

)2


= Q∗η

[
K̃F,η
n

D̃η
n

1EnF (Sn(Z)/
√
n)

h1(Sn(Z) + 2η)

]
+ Q∗η

[
K̃F,η
n

D̃η
n

1EcnF (Sn(Z)/
√
n)

h1(Sn(Z) + 2η)

]
.

Using that by assumption, the first term of the sum is smaller than or
equal to n−1(θE

[
F (
√

2R1)
]
)2 + o (1/n), it suffices to show that the second

term above is o(1/n) as n → ∞. By Cauchy–Schwarz, Lemma 6.9 and
boundedness of F , it is enough to show the same for

(6.23) Q∗η
[
1Ecn(h1(Sn(Z) + 2η)−2] .

For this, consider the event Fε = {Sn − S0 > εn1/2} and write (6.23) as
the sum

Q∗η
[
1{Fε}1{Ecn}(h1(Sn(Z) + 2η)−2]+ Q∗η

[
1{F cε }1{Ecn}(h1(Sn(Z) + 2η)−2] .

Using that h1(u) > R(1 + u) and that S0(z) + 2η > 0 under Q∗η,z, we
can bound the first term above by c(1 + ε2n)−1Q∗η

[
1{Ecn}

]
. Moreover, as in

Lemma 6.9 we can now use the convergence to the Brownian meander and
the fact that z ∈ rD to bound the second term by n−1c′ε for some absolute
constant c′. As ε can be taken arbitrarily small, the lemma follows. �

It thus remains to find a suitable sequence of events En: such that
Q∗η(En) → 1 and that (6.22) holds. As hinted at in the heuristic discus-
sion before Lemma 6.9, the idea is to find an appropriate separation of
scales. We will show that kn = k′n = n1/3 is the right choice.
Indeed, pick kn = n1/3 and decompose K̃F,η

n and D̃η
n by writing

K̃F,η
n = K̃

F,η,k−n
n + K̃

F,η,k+
n

n ; and D̃η
n = D̃

η,k+
n

n + D̃
η,k−n
n

where the superscript k+
n refers to the integral over Bkn and the superscript

k−n refers to the integral over O \ Bkn (recall that Bkn was defined to be
the connected component of D \An containing Z).

We now define our sequence of events En by setting En = E1
n ∩ E2

n, where

E1
n := {D̃η,k+

n
n 6 1/n2}; E2

n = {Skn(Z) ∈ [k1/3
n , kn]}.

Under Q∗η,z, the walk Sn(z) is a random walk with finite variance incre-
ments, conditioned to stay above −2η. It then follows that it will with high
probability stay inside a window [n1/3, n] for n large enough. Hence we
obtain:
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Lemma 6.11. — Q∗η
[
E2
n

]
→ 1 as n→∞.

We next claim that conditioned on E2
n the event E1

n also happens with
large probability.

Lemma 6.12. — There exists a deterministic sequence pn ↗ 1 such
that 1E2

n
Q∗η[E1

n | F∗Akn ] > pn1E2
n
almost surely. Here F∗Akn is the σ-algebra

generated by FAkn together with σ(Z)

We will postpone the proof of this lemma. For now, observe that since
E2
n is F∗Akn measurable, the combination of Lemmas 6.11 and 6.12 imply

that Q∗η [En]→ 1 as n→∞.
Hence it remains to prove (6.22). Using positivity of the integrands defin-

ing K̃F,η
n and D̃η

n, the first step is to bound the left hand-side of (6.22) by

(6.24) Q∗η

[
K̃
F,η,k+

n
n

D̃η
n

1E1
n
F (Sn(Z)/

√
n)

h1(Sn(Z) + 2η)

]
+Q∗η

[
K̃
F,η,k−n
n

D̃η,k−n
n

1EnF (Sn(Z)/
√
n)

h1(Sn(Z) + 2η)

]
.

Next, on the event E1
n, we have that

0 6 K̃F,η,k+
n

n 6 ‖F‖∞D̃
η,k+

n
n 6 ‖F‖∞/n2.

Using the definition of Q∗η and bounding h1 > 1 we see that the first
term of (6.24) is smaller than n−2 times ‖F‖2∞/D

η
0(O). Since we also have

Dη
0(O) > 0, the first term is of order o(1/n).
For the second term, we use that the two ratios in the expectation are

conditionally independent given F∗Akn . This means that we can write

Q∗η

[
K̃
F,η,k−n
n

D̃η,k−n
n

1EnF (Sn(Z)/
√
n)

h1(Sn(Z) + 2η)

∣∣∣∣∣F∗Akn
]

as

Q∗η

[
K̃
F,η,k−n
n

D̃η,k−n
n

∣∣∣∣∣F∗Akn
]

1E1
n
1E2

n
Q∗η
[
F (Sn(Z)/

√
n)

h1(Sn(Z) + 2η)

∣∣∣∣F∗Akn] .(6.25)

We then have, by (the comment following) (A.4), and the proof of (6.14),
that

1E2
n
Q∗η
[
F (Sn(Z)/

√
n)

h1(Sn(Z) + 2η)

∣∣∣∣F∗Akn] =
(
θE
[
F (
√

2R1)
]

√
n

+ o(1/
√
n)
)

1E2
n
,

where the o(1/
√
n) is deterministic. It therefore remains to prove that

(6.26) Q∗η

[
K̃
F,η,k−n
n

D̃η,k−n
n

1En

]
6
θE
[
F (
√

2R1)
]

√
n

+ o(1/
√
n).
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To do this, we break up (6.26) as

Q∗η

[
K̃
F,η,k−n
n

D̃η,k−n
n

1En1{D̃ηn>1/n}

]
+ Q∗η

[
K̃
F,η,k−n
n

D̃η,k−n
n

1En1{D̃ηn61/n}

]
.

Note that K̃F,η,k−n
n is smaller than ‖F‖∞D̃

η,k−n
n . It therefore follows that

we can bound the second term by (D̃η
0)−1E

[
D̃η
n1{D̃ηn61/n}

]
, which is again

o(1/
√
n) since D̃η

0 is non-zero.
Moreover, on the event En ∩ {D̃η

n > 1/n} we have D̃η
n/D̃

η,k−n
n = 1 +

O(1/n), and so we see that the first term of (6.26) is less than or equal to
(1 + O(1)) times the first moment in (6.14). Since we already know that
this is θE

[
F (
√

2R1)
]
/
√
n+ o(1/

√
n), the proof is complete. �

It is only in the proof of the final lemma, Lemma 6.12, that we need to
do a bit of extra work over that already done in [3]. This comes from the
fact that, unlike in the classical setting of multiplicative cascades, the sets
An at the n−th level have different shapes and sizes. In this lemma, we can
however use the work of [1].
Proof of Lemma 6.12. — Define further events E3

n and E4
n by setting

E3
n = ∩kn6j6n{Sj(Z) > k1/6

n };

E4
n = ∩kn6j6n{supw∈Bj |Z − w| 6 j

c CR(Z,Bj)}

where Bj is the connected component of D\Aj containing Z and c > 0 is
some fixed constant to be chosen just below (see also [1, Lemma 3.5]). We
argue that:

(i) 1E2
n
Q∗η
[
E3
n

∣∣∣F∗Akn ] > pn1E2
n
, where pn → 1 is deterministic;

(ii) 1E2
n
Q∗η
[
E4
n

∣∣∣F∗Akn ] > qn1E2
n
, where qn → 1 is deterministic; and

finally
(iii) Q∗η

[
D̃
η,k+

n
n 1E3

n∩E4
n

∣∣∣F∗Akn ] 6 rn where rn = o(1/n2) is deterministic.

This proves the lemma by conditional Markov’s inequality.
Statement (i) follows from the fact that under the given conditional law,

(Sj(Z) − Skn(Z); j > kn) is a centered random walk conditioned to stay
above −Skn(Z) + 2η.
Statement (ii) follows from the proof of [1, Lemma 3.5]. This proof shows

that for c large enough,

Q∗η
[
supw∈Bj |Z − w| > jc CR(Z,Bj)

∣∣∣F∗Akn ] 6 c′j−2,

for some constant c′ (note the right-hand side is deterministic.)
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For (iii), we bound Q∗η
[
D̃
η,k+

n
n 1E3

n∩E4
n
| F∗Akn

]
above by

(6.27) Q∗η
[
1E3

n∩E4
n

∫
Bn
h1(−2n+ 4 log CR−1(w,Bn) + 2η)

1Eη(w,n) e2n CR(w,Bn)2 dw
∣∣∣F∗Akn ]

+
n−1∑
j=kn

Q∗η

[
1E3

n∩E4
n

∫
Bj\Bj+1

h1(−2n+ 4 log CR−1(w,An) + 2η)

1Eη(w,n) e2n CR(w,An)2dw
∣∣∣F∗Akn ].

To control each term on the second line of (6.27), we condition further on
all the brother loops of the point Z at level (j+1); that is, the components
of D \ Aj+1 contained in Bj but not Bj+1. Now, the description of (An)n
under Q∗η,z given by observation (4) in Section 6.3.1 implies that after
conditioning on Z and the brother loops of Z at level (j + 1), the process

h1(−2k + 4 log CR−1(w,Ak))1Eη(w,k) e2k CR(w,Ak)2

is a martingale for k > j + 1. Hence on the event {Z = z} the jth term of
the sum in (6.27) is equal to the expected value under Q∗η,z, conditionally
on F∗Akn , of

1E3
n∩E4

n

∫
Bj\Bj+1

h1(−2(j + 1) + 4 log CR−1(w,Aj+1) + 2η)

1Eη(w,j+1) e2j CR(w,Aj+1)2dw.

Moreover, this conditional expectation can be bounded above by a constant
times

Q∗η,z

[
1E3

n∩E4
n

∫
Bj\Bj+1

h1(4 log CR−1(w,Bj) + 2η − 2j)

e2j−2 log CR−1(w,Bj) dw

∣∣∣∣∣F∗Akn
]
,

because CR(w,D \Aj) is decreasing in j, and h1 is bounded on either side
by a linear function by (A.3).
Finally, note that on the event E3

n ∩ E4
n, thanks to Köebe’s theorem,

2j−2 log CR−1(w,Bj) is smaller than Sj +2c log(j)+2 log CR−1(z,Bj) for
kn 6 j 6 n, and the area of each Bj is O(CR(z,Bj)2). This means that
every term in (6.27) is O(exp(− 6

√
kn/2)n4c+1), and since kn = n1/3, this

therefore implies (iii). �
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We conclude by showing how to extend the proof of Proposition 6.8
to treat O that are not compactly supported in D. For simplicity, we let
O = D.
Proof. — Fix η > 0, and for ε > 0 set Oε := (1 − ε)D. We then know

that

(6.28)
√
nK̃η,F

n (Oε)
D̃η
n(Oε)

→ θE
[
F (
√

2R1)
]

in Qη-probability as n→∞, for every ε > 0. (4)

Write

(6.29)
√
nK̃η,F

n (D)
D̃η
n(D)

=
√
nK̃η,F

n (Oε)
D̃η
n(Oε)

−
√
nK̃η,F

n (Oε)
D̃η
n(Oε)

D̃η
n(D \ Oε)
D̃η
n(D)

+
√
nK̃η,F

n (D \ Oε)
D̃η
n(D)

and observe that for any δ > 0, by Markov’s inequality,

Qη

(
D̃η
n(D \ Oε)
D̃η
n(D)

> δ

)
6 δ−1E(D̃η

n(D \ Oε)) = δ−1E(D̃η
n(D \ Oε))

ε→0→ 0,

uniformly in n.
Combining this with (6.28) and (6.29) means that we need only prove,

for every δ > 0, that

(6.30) Qη

(√
nK̃η,F

n (D \ Oε)
D̃η
n(D)

> δ

)
ε→0→ 0

uniformly in n.
For this, we again use Markov’s inequality, and the same strategy that

we used to prove the first moment estimate (6.14). We write

(6.31) Qη

(√
nK̃η,F

n (D \ Oε)
D̃η
n(D)

)
=
∫
z∈D\Oε

Q∗η,z
[√

nF (Sn(z)/
√
n)

h1(Sn(z) + 2η)

]
Q∗η(dz)

and prove that this expectation converges to 0 as ε → 0, uniformly in
n. Note that by (A.4), and the comments following it, the integrand on

(4) Here, by Qη we mean the measure defined by (6.12) with O = D. In fact, for fixed
ε > 0, Proposition 6.8 only tells us that we have the convergence in probability (6.28)
when Qη is defined using O = Oε. However, since the two probability measures (i.e.
when Qη is defined using O = Oε or O = D) are absolutely continuous, we can deduce
the stated result as well.
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the right hand side of (6.31) is uniformly bounded over z such that
4 log CR−1(z,D) 6 n1/3. Moreover, using that

Q∗η[dz] ∝ h1(4 log CR−1(z,D) + 2η) CR(z,D)2dz,

and that F and 1/h1 are bounded from above, we see that (independently
of ε) the integral over the remainder of D \ Oε decays exponentially in n.
This implies the result, since the area of D \ Oε vanishes as ε→ 0. �

Appendix A. Renewal functions

The material in this appendix comes almost entirely from [3, Section 2].

Let (Sn)n>1 be a centered random walk under some law P, starting from
S0 = 0, and whose increments have finite variance σ2. Then the renewal
function h1(u) is the expected number of times that (Sn)n hits a strict new
minimum before reaching −u:

h1(u) := P̂∗
 ∞∑
j=1

1{infi6j−1 Si>Sj>−u}

∣∣∣∣∣∣ Z
 > 1, u > 0.

Note that, by the Markov property, we have

(A.1) h1(u) = E
[
h1(Sn + u)1{Sn+u>0}

]
for any n ∈ N.

By the renewal theorem and our conditions on (Sn)n, it follows that the
limit

(A.2) lim
u→∞

h1(u)
u

=: c0

exists, and c0 ∈ (0,∞). Consequently we have

(A.3) R′(1 + u) > h1(u) > R(1 + u)

for all u > 0 and some R,R′ > 0.
Finally, we also need the following asymptotic estimate from [19]. For

θ := c−1
0

√
2
πσ2 , we have

(A.4) P
(

min
16i6n

Si > −u
)
∼ θh1(u)√

n

as n → ∞, for any u > 0 (see [19, Formula 12]). Moreover, it can be
shown ([2]) that this holds uniformly for u ∈ [0, bn], whenever (bn)n>0 is a
sequence of positive reals such that limn→∞ bnn

−1/2 = 0.
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Appendix B. Proof of Theorem 6.7

In this appendix, we show in full detail how Proposition 6.8 implies
Theorem 6.7.

Fix δ > 0, assume WLOG that ‖F‖∞ = 1 and pick u0 > 0 such that
h1(u)/u ∈ [c0 − δ, c0 + δ] for all u > u0 (which is possible by (A.2)). Then
on the event ∩z ∩n Eη−u0(z, n), we have∣∣∣∣∣D̃η

n(O)− c0Dn(O)
Dn(O)

∣∣∣∣∣ 6 δ + 4c0η
∣∣∣∣Mn(O)
Dn(O)

∣∣∣∣ .
If we assume in addition that we are on the event An,η ∩A′n,η defined as{∣∣∣∣Mn(O)

Dn(O)

∣∣∣∣ 6 δ

c0η

}
∩

{∣∣∣∣∣c0
√
nK̃F,η

n (O)
D̃η
n(O)

− 1√
π
E
[
F (
√

2R1)
]∣∣∣∣∣ 6 δ

}
,

then (as long as δ is small enough) we have∣∣∣∣√nKF
n (O)

DF
n (O) − 1√

π
E
[
F (
√

2R1)
]∣∣∣∣

6

∣∣∣∣∣
√
nK̃F,η

n (O)
D̃η
n(O)

∣∣∣∣∣
∣∣∣∣∣D̃η

n(O)− c0Dn(O)
Dn(O)

∣∣∣∣∣
+

∣∣∣∣∣c0
√
nK̃F,η

n (O)
D̃η
n(O)

− 1√
π
E
[
F (
√

2R1)
]∣∣∣∣∣ ,

which by definition is smaller than 3δ. Therefore, we can bound

P
(∣∣∣∣√nKF

n (O)
DF
n (O) −

1√
π
E
[
F (
√

2R1)
]∣∣∣∣ > 3δ

)
6 P(∪z ∪n Eη−u0(z, n)) + P((An,η)c) + P((A′n,η)c),

which, by the definition of Qη, is for any K > 0 less than or equal to

P(∪z∪nEη−u0(z, n))+P((An,η)c)+P
(
D̃η
n(O) 6 1

K

)
+ K

D̃η
0(O)

Qη((A′n,η)c).

Now take ε > 0. By (6.6), Proposition 6.4 and Proposition 6.1, we can pick
u0, η,K and N0 ∈ N such that the first three terms above are each less than
ε/4 for all n > N0. Then, using Proposition 6.8, we can choose a further
N ′0 > N0 such that the final term is also less than ε/4 for n > N ′0. Since ε
and δ were arbitrary, this concludes the proof of the theorem.
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