I. Tomašek
Development of a simulated lung fluid leaching method to assess the release of potentially toxic elements from volcanic ash
Tomašek, I.; Damby, D.E.; Stewart, C.; Horwell, C.J.; Plumlee, G.; Ottley, C.J.; Delmelle, P.; Morman, S.; Yazidi, S.E.L.; Claeys, P.; Kervyn, M.; Elskens, M.; Leermakers, M.
Authors
D.E. Damby
C. Stewart
Professor Claire Horwell claire.horwell@durham.ac.uk
Professor
G. Plumlee
Dr Christopher Ottley c.j.ottley@durham.ac.uk
Chief Experimental Officer - Geochemistry
P. Delmelle
S. Morman
S.E.L. Yazidi
P. Claeys
M. Kervyn
M. Elskens
M. Leermakers
Abstract
Freshly erupted volcanic ash contains a range of soluble elements, some of which can generate harmful effects in living cells and are considered potentially toxic elements (PTEs). This work investigates the leaching dynamics of ash-associated PTEs in order to optimize a method for volcanic ash respiratory hazard assessment. Using three pristine (unaffected by precipitation) ash samples, we quantify the release of PTEs (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn) and major cations typical of ash leachates (Mg, Na, Ca, K) in multiple simulated lung fluid (SLF) preparations and under varying experimental parameters (contact time and solid to liquid ratio). Data are compared to a standard water leach (WL) to ascertain whether the WL can be used as a simple proxy for SLF leaching. The main findings are: PTE concentrations reach steady-state dissolution by 24 h, and a relatively short contact time (10 min) approximates maximum dissolution; PTE dissolution is comparatively stable at low solid to liquid ratios (1:100 to 1:1000); inclusion of commonly used macromolecules has element-specific effects, and addition of a lung surfactant has little impact on extraction efficiency. These observations indicate that a WL can be used to approximate lung bioaccessible PTEs in an eruption response situation. This is a useful step towards standardizing in vitro methods to determine the soluble-element hazard from inhaled ash.
Citation
Tomašek, I., Damby, D., Stewart, C., Horwell, C., Plumlee, G., Ottley, C., Delmelle, P., Morman, S., Yazidi, S., Claeys, P., Kervyn, M., Elskens, M., & Leermakers, M. (2021). Development of a simulated lung fluid leaching method to assess the release of potentially toxic elements from volcanic ash. Chemosphere, 278, Article 130303. https://doi.org/10.1016/j.chemosphere.2021.130303
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 11, 2021 |
Online Publication Date | Mar 17, 2021 |
Publication Date | 2021-09 |
Deposit Date | Mar 19, 2021 |
Publicly Available Date | Mar 17, 2022 |
Journal | Chemosphere |
Print ISSN | 0045-6535 |
Electronic ISSN | 1879-1298 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 278 |
Article Number | 130303 |
DOI | https://doi.org/10.1016/j.chemosphere.2021.130303 |
Public URL | https://durham-repository.worktribe.com/output/1278672 |
Files
Accepted Journal Article
(4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Volcanic air pollution and human health: recent advances and future directions
(2021)
Journal Article