S Ruiz-Bonilla
The effect of pre-impact spin on the Moon-forming collision
Ruiz-Bonilla, S; Eke, VR; Kegerreis, JA; Massey, RJ; Teodoro, LFA
Authors
Dr Vincent Eke v.r.eke@durham.ac.uk
Associate Professor
Jacob Kegerreis jacob.kegerreis@durham.ac.uk
Academic Visitor
Professor Richard Massey r.j.massey@durham.ac.uk
Professor
LFA Teodoro
Abstract
We simulate the hypothesized collision between the proto-Earth and a Mars-sized impactor that created the Moon. Among the resulting debris disc in some impacts, we find a self-gravitating clump of material. It is roughly the mass of the Moon, contains ∼1 per cent iron like the Moon, and has its internal composition resolved for the first time. The clump contains mainly impactor material near its core but becomes increasingly enriched in proto-Earth material near its surface. The formation of this Moon-sized clump depends sensitively on the spin of the impactor. To explore this, we develop a fast method to construct models of multilayered, rotating bodies and their conversion into initial conditions for smoothed particle hydrodynamical (SPH) simulations. We use our publicly available code to calculate density and pressure profiles in hydrostatic equilibrium and then generate configurations of over a billion particles with SPH densities within 1 per cent of the desired values. This algorithm runs in a few minutes on a desktop computer, for 107 particles, and allows direct control over the properties of the spinning body. In comparison, alternative relaxation or spin-up techniques take hours on a supercomputer and the structure of the rotating body cannot be known beforehand. Collisions that differ only in the impactor’s initial spin reveal a wide variety of outcomes: a merger, a grazing hit-and-run, or the creation of an orbiting proto-Moon.
Citation
Ruiz-Bonilla, S., Eke, V., Kegerreis, J., Massey, R., & Teodoro, L. (2021). The effect of pre-impact spin on the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 500(3), 2861-2870. https://doi.org/10.1093/mnras/staa3385
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 20, 2020 |
Online Publication Date | Dec 4, 2020 |
Publication Date | 2021-01 |
Deposit Date | Jun 29, 2021 |
Publicly Available Date | Jun 29, 2021 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 500 |
Issue | 3 |
Pages | 2861-2870 |
DOI | https://doi.org/10.1093/mnras/staa3385 |
Public URL | https://durham-repository.worktribe.com/output/1273344 |
Files
Published Journal Article
(2.8 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal astronomical Society ©: 2020 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
RXJ0437+00: constraining dark matter with exotic gravitational lenses
(2023)
Journal Article
Abell 1201: detection of an ultramassive black hole in a strong gravitational lens
(2023)
Journal Article
PyAutoGalaxy: Open-Source Multiwavelength Galaxy Structure & Morphology
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search