L. Cabayol
The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning
Cabayol, L.; Eriksen, M.; Carretero, J.; Casas, R.; Castander, F.J.; Fernández, E.; Garcia-Bellido, J.; Gaztanaga, E.; Hildebrandt, H.; Hoekstra, H.; Joachimi, B.; Miquel, R.; Padilla, C.; Pocino, A.; Sanchez, E.; Serrano, S.; Sevilla, I.; Siudek, M.; Tallada-Crespí, P.; Aghanim, N.; Amara, A.; Auricchio, N.; Baldi, M.; Bender, R.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C.J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C.A.J.; Dupac, X.; Dusini, S.; Farrens, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S.V.H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Hudelot, P.; Jahnke, K.; Kümmel, M.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kohley, R.; Kurki-Suonio, H.; Ligori, S.;...
Authors
M. Eriksen
J. Carretero
R. Casas
F.J. Castander
E. Fernández
J. Garcia-Bellido
E. Gaztanaga
H. Hildebrandt
H. Hoekstra
B. Joachimi
R. Miquel
C. Padilla
A. Pocino
E. Sanchez
S. Serrano
I. Sevilla
M. Siudek
P. Tallada-Crespí
N. Aghanim
A. Amara
N. Auricchio
M. Baldi
R. Bender
D. Bonino
E. Branchini
M. Brescia
J. Brinchmann
S. Camera
V. Capobianco
C. Carbone
M. Castellano
S. Cavuoti
A. Cimatti
R. Cledassou
G. Congedo
C.J. Conselice
L. Conversi
Y. Copin
L. Corcione
F. Courbin
M. Cropper
A. Da Silva
H. Degaudenzi
M. Douspis
F. Dubath
C.A.J. Duncan
X. Dupac
S. Dusini
S. Farrens
P. Fosalba
M. Frailis
E. Franceschi
P. Franzetti
B. Garilli
W. Gillard
B. Gillis
C. Giocoli
A. Grazian
F. Grupp
S.V.H. Haugan
W. Holmes
F. Hormuth
A. Hornstrup
P. Hudelot
K. Jahnke
M. Kümmel
S. Kermiche
A. Kiessling
M. Kilbinger
R. Kohley
H. Kurki-Suonio
S. Ligori
P.B. Lilje
I. Lloro
E. Maiorano
O. Mansutti
O. Marggraf
K. Markovic
F. Marulli
Professor Richard Massey r.j.massey@durham.ac.uk
Professor
S. Mei
M. Meneghetti
E. Merlin
G. Meylan
M. Moresco
L. Moscardini
E. Munari
R. Nakajima
S.M. Niemi
S. Paltani
F. Pasian
K. Pedersen
V. Pettorino
G. Polenta
M. Poncet
L. Popa
L. Pozzetti
F. Raison
R. Rebolo
J. Rhodes
G. Riccio
C. Rosset
E. Rossetti
R. Saglia
B. Sartoris
P. Schneider
A. Secroun
G. Seidel
C. Sirignano
G. Sirri
L. Stanco
A.N. Taylor
I. Tereno
R. Toledo-Moreo
F. Torradeflot
I. Tutusaus
E. Valentijn
L. Valenziano
Y. Wang
J. Weller
G. Zamorani
J. Zoubian
S. Andreon
V. Scottez
A. Tramacere
Abstract
Current and future imaging surveys require photometric redshifts (photo-zs) to be estimated for millions of galaxies. Improving the photo-z quality is a major challenge but is needed to advance our understanding of cosmology. In this paper we explore how the synergies between narrow-band photometric data and large imaging surveys can be exploited to improve broadband photometric redshifts. We used a multi-task learning (MTL) network to improve broadband photo-z estimates by simultaneously predicting the broadband photo-z and the narrow-band photometry from the broadband photometry. The narrow-band photometry is only required in the training field, which also enables better photo-z predictions for the galaxies without narrow-band photometry in the wide field. This technique was tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method predicts photo-zs that are 13% more precise down to magnitude iAB < 23; the outlier rate is also 40% lower when compared to the baseline network. Furthermore, MTL reduces the photo-z bias for high-redshift galaxies, improving the redshift distributions for tomographic bins with z > 1. Applying this technique to deeper samples is crucial for future surveys such as Euclid or LSST. For simulated data, training on a sample with iAB < 23, the method reduces the photo-z scatter by 16% for all galaxies with iAB < 25. We also studied the effects of extending the training sample with photometric galaxies using PAUS high-precision photo-zs, which reduces the photo-z scatter by 20% in the COSMOS field.
Citation
Cabayol, L., Eriksen, M., Carretero, J., Casas, R., Castander, F., Fernández, E., Garcia-Bellido, J., Gaztanaga, E., Hildebrandt, H., Hoekstra, H., Joachimi, B., Miquel, R., Padilla, C., Pocino, A., Sanchez, E., Serrano, S., Sevilla, I., Siudek, M., Tallada-Crespí, P., Aghanim, N., …Tramacere, A. (2023). The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning. Astronomy & Astrophysics, 671, Article A153. https://doi.org/10.1051/0004-6361/202245027
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 13, 2023 |
Online Publication Date | Mar 21, 2023 |
Publication Date | 2023-03 |
Deposit Date | Jun 20, 2023 |
Publicly Available Date | Jun 20, 2023 |
Journal | Astronomy & Astrophysics |
Print ISSN | 0004-6361 |
Electronic ISSN | 1432-0746 |
Publisher | EDP Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 671 |
Article Number | A153 |
DOI | https://doi.org/10.1051/0004-6361/202245027 |
Public URL | https://durham-repository.worktribe.com/output/1169522 |
Files
Published Journal Article
(4.8 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
RXJ0437+00: constraining dark matter with exotic gravitational lenses
(2023)
Journal Article
Abell 1201: detection of an ultramassive black hole in a strong gravitational lens
(2023)
Journal Article
PyAutoGalaxy: Open-Source Multiwavelength Galaxy Structure & Morphology
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search