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The effect of pre-impact spin on the Moon-forming collision
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ABSTRACT
We simulate the hypothesized collision between the proto-Earth and a Mars-sized impactor that created the Moon. Among
the resulting debris disc in some impacts, we find a self-gravitating clump of material. It is roughly the mass of the Moon,
contains ∼ 1 per cent iron like the Moon, and has its internal composition resolved for the first time. The clump contains mainly
impactor material near its core but becomes increasingly enriched in proto-Earth material near its surface. The formation of
this Moon-sized clump depends sensitively on the spin of the impactor. To explore this, we develop a fast method to construct
models of multilayered, rotating bodies and their conversion into initial conditions for smoothed particle hydrodynamical (SPH)
simulations. We use our publicly available code to calculate density and pressure profiles in hydrostatic equilibrium and then
generate configurations of over a billion particles with SPH densities within 1 per cent of the desired values. This algorithm runs
in a few minutes on a desktop computer, for 107 particles, and allows direct control over the properties of the spinning body. In
comparison, alternative relaxation or spin-up techniques take hours on a supercomputer and the structure of the rotating body
cannot be known beforehand. Collisions that differ only in the impactor’s initial spin reveal a wide variety of outcomes: a merger,
a grazing hit-and-run, or the creation of an orbiting proto-Moon.

Key words: hydrodynamics – methods: numerical – Moon – planets and satellites: formation – planets and satellites: terrestrial
planets.

1 IN T RO D U C T I O N

From planets and stars to dark matter haloes, self-gravitating spinning
objects are common in astronomy. Their spin reflects the particular
history of gravitational torques experienced by the material that they
contain. By studying the angular momenta of astronomical systems,
we can learn about the processes through which these objects formed.

As self-gravitating objects can only spin so fast without breaking
apart, the orbital angular momentum of accreting material typically
dominates over that present due to spin. For instance, the final stage of
planet formation involves giant impacts between planet-sized bodies
(Chambers & Wetherill 1998; Clement et al. 2019), and the pre-
impact spins are usually ignored despite the fact that rapidly rotating
bodies are a common outcome of such collisions (Kokubo & Genda
2010; Li et al. 2020). Examples of this include attempts to explain
Uranus’ rotation axis using orbital angular momentum brought by
a 2–3 M⊕ object (Slattery, Benz & Cameron 1992; Kegerreis et al.
2018), and models in which the angular momentum of the Earth–
Moon system results from the impact of a non-rotating Mars-sized
body, Theia, and a non-rotating proto-Earth (Canup & Asphaug
2001).

The Moon-forming impact is one planetary example for which
pre-impact spin has received consideration. Canup (2008) showed
how pre-impact rotation changed the collision outcome relative to
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the canonical impact studied by Canup & Asphaug (2001). The
isotopic similarity of the Earth’s mantle and lunar samples (Wiechert
et al. 2001) provoked attempts to place a higher fraction of proto-
Earth material into the protolunar disc by starting with a spinning
target (Ćuk & Stewart 2012; Lock & Stewart 2017; Wyatt et al. 2018).
Initial conditions for these numerical simulation studies were created
by first making a spherical planet, providing it with a small angular
velocity, letting it relax in a smoothed particle hydrodynamical (SPH)
simulation, and then repeating this process until the desired angular
velocity was reached (supplementary materials: Ćuk & Stewart
2012). This method is slow and leads to pre-impact planets with
structures that cannot be known until the end of this process.

Interest in the canonical impact model has been revived by the
recent detection of oxygen isotope heterogeneity in returned lunar
samples, where the signature of Theia becomes increasingly apparent
in samples derived from deeper in the lunar mantle (Cano, Sharp &
Shearer 2020). Of particular relevance for our study are the frequently
sighted clumps of SPH particles among the post-impact debris (e.g.
Benz, Slattery & Cameron 1987). These clumps form in the tidal arm
of debris coming from the part of Theia that does not directly strike
the proto-Earth (Canup 2004). However, concerns over artificial
clumping of SPH particles in shear flows (Imaeda & Inutsuka 2002)
and numerical convergence of results during the chaotic post-impact
evolution (Canup, Barr & Crawford 2013; Asphaug 2014) have left
uncertain whether or not this clump could be the proto-Moon. Even
when clumps were present in high-resolution SPH simulations, they
were most notable for their effect on the material in the smoother
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debris disc because their orbits led them to collide with the Earth in
a matter of hours (Hosono et al. 2017).

Investigating the effect of spin on planetary collisions requires
many simulations in which both the initial spin and the internal
composition are reliably generated. The challenge of finding an
elegant and efficient way to construct initial conditions has significant
overlap with attempts to model the internal structures of gas giant
planets using their measured gravitational moments. Much of this
work has made use of the concentric Maclaurin spheroid (CMS)
method introduced by Hubbard (2013), where a uniformly spinning
planet is described as a superposition of constant density spheroids
– for which closed analytical solutions exist for the moments of
the gravitational potential (Hubbard 2012). This method has been
developed to improve precision at high spin rates (Kong, Zhang &
Schubert 2013; Lock & Stewart 2017), include differential rotation
on cylinders (Wisdom & Hubbard 2016), and increase the number
of spheroids that can be included for a given computing time
(Militzer, Wahl & Hubbard 2019). For example, measurements of
the gravitational moments from the Juno mission (Iess et al. 2018)
have been used in conjunction with CMS models to infer the extent
of the differential rotation of Jupiter’s atmosphere (Guillot et al.
2018). The situation for Saturn is complicated by the presence of
extensive rings, but the CMS method has also been used to analyse
recent Cassini measurements and study the planet’s more extensive
differential rotation (Iess et al. 2019).

In this paper, we present a fast algorithm that calculates the internal
density profile of a rotating object composed of any prescribed
materials in hydrostatic equilibrium and places particles into the
body such that very little, if any, relaxation is required for numerical
simulations. The method is based on the CMS technique without
differential rotation, but it allows arbitrary equations of state to
be used for multiple material layers and exploits an analytical
expression for the gravitational potential rather than using a slower
and less accurate truncated expansion of Legendre polynomials.
Our open-source code is a flexible tool that has been written
in PYTHON under the project name WoMa (World Maker). It is
described in Section 2, tested in Section 3, and publicly available
at https://github.com/srbonilla/WoMa. In Section 4, we use WoMa
to construct initial conditions for a set of giant impacts between the
proto-Earth and Mars-sized impactors with a variety of rotation rates.
Conclusions are presented in Section 5.

2 IN I T I A L C O N D I T I O N S G E N E R AT I O N

In this section, we describe our method for creating particulate
realizations of uniformly spinning spheroids. It entails: (1) iteratively
solving the equation of hydrostatic equilibrium to create an interior
model of the spinning object, and (2) sampling the three-dimensional
solution with particles, arranged such that their SPH densities match
the desired values.

2.1 Interior model

Within the reference frame of a body spinning about its z-axis with
constant angular velocity �, the equation of hydrostatic equilibrium
can be written using cylindrical coordinates, r = (rxy, α, z), as

1

ρ
∇P = −∇φ − �2rxy r̂xy, (1)

where P(rxy, z), ρ(rxy, z), and φ(rxy, z) represent the azimuthally
symmetric pressure, density, and gravitational potential, respectively.
The third term represents the centrifugal force and is directed away

from the rotation axis. The right-hand side of equation (1) can be
viewed as the negative gradient of an effective potential, �, that
includes the gravity and angular momentum barrier terms:

� = φ + 1

2
�2r2

xy. (2)

To solve equation (1), we also need a sufficient selection of the
following quantities to make the problem well-defined: an equation
of state (EoS), P(ρ, T), and a temperature–density relation, T(ρ),
for each material; the pressure, Ps, density, ρs, and temperature,
Ts, at the surface of the object; and the total mass, M, radius of
the non-rotating solution, R� = 0, and locations of any boundaries
between distinct material layers in the non-rotating body, RB, � = 0.
Note that not all of these variables need to be specified as inputs for
WoMa. The EoS, the temperature–density relation, and two of the
three boundary conditions (Ps, ρs, and Ts) must always be specified.
However, various combinations of the other quantities can be used
as inputs; for example WoMa can determine the total mass, given the
total radius for a one-layer object, or the boundary between materials,
given the total mass and radius for a body containing two distinct
material layers. Many other combinations are available, particularly
for three-layer planets.

The solution to equation (1) for a constant density object is
the Maclaurin (oblate) spheroid (Tassoul 1978), and more general
solutions can be described as systems of overlapping CMSs (Hubbard
2013). Then, the density at any point inside the planet is the sum of
the densities of all of the spheroids containing that point. As the
isodensity surfaces are all spheroids, we can describe the full three-
dimensional solution to equation (1) using just the equatorial and
polar density profiles.

Our approach to solving equation (1) begins by finding the density
profile for the spherically symmetric, non-rotating (� = 0) case.
This solution, ρ� = 0(r), is evaluated in two one-dimensional arrays,
one in each of the equatorial and polar directions. These arrays both
contain Ng elements and span out to rxy = 1.5R� = 0 and z= 1.2R� = 0.
These maxima can be increased, if needed, for very rapidly rotating
objects. ρ i = 0(rxy, z) is used to compute the first value of the effective
potential, �1, via

�i(rxy, z) =
•

ρi−1(rxy, z)

|r − r ′| d3r ′ + 1

2
�2r2

xy. (3)

The iteration loop is closed by updating the density, ρ i(rxy, z), as the
solution to

1

ρi(rxy, z)
∇Pi(rxy, z) = −∇�i(rxy, z), (4)

where Pi(rxy, z) = P(ρ i, Ti) is determined by the EoS. These iterations
do not conserve the total mass of the object. However, WoMa will
loop over different M� = 0 values, or whichever variable is relevant,
until a solution is found with the desired mass.

The iterative process is continued until the mean fractional
difference between the two last equatorial density profiles falls below
a specified threshold. This corresponds to c < 10−3, where the
convergence statistic is defined as

c ≡ 1

Ng

Ng∑
j=1

|ρi(rxy,j) − ρi−1(rxy,j)|
ρi−1(rxy,j)

, (5)

and the average is determined using only elements j for which ρ i(rxy, j)
and ρ i − 1(rxy, j) are both non-zero.

For uniform-density oblate spheroids, the three-dimensional inte-
gral to find the gravitational potential in equation (3) can be recast as a
one-dimensional integration. Defining the semimajor and semiminor
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axes as R and Z, respectively, the gravitational potential due to an
oblate spheroid of constant density, ρ, can be written as (Kellogg
1929)

φ(rxy, z) = −GρπR2Z

∫ ∞

λ

(
1 − r2

xy

R2 + s
− z2

Z2 + s

)
ds√
ϕ(s)

,

(6)

where ϕ(s) ≡ (R2 + s)2(Z2 + s), and λ = 0 if (rxy, z) lies within
the spheroid, or the biggest root of the equation f(s) = 0 otherwise,
where

f (s) ≡ r2
xy

R2 + s
+ z2

Z2 + s
− 1. (7)

Equation (6) can be solved analytically along the axis rxy = 0 and
in the plane z = 0, both inside and outside the spheroid, to give

φ(z)

A
=

[
2z2(

R2 − Z2
)√

Z2 + t
+ 2

(
R2 + z2 − Z2(
R2 − Z2

)3/2

)
tan−1 γ

]t→∞

t=λ

(8)

for rxy = 0, and

φ(rxy)

A
=

[
−r2

xy

√
t + Z2(

R2 + t
) (

R2 − Z2
) + 2R2 + 2Z2 − r2

xy(
R2 − Z2

)3/2 tan−1 γ

]t→∞

t=λ

(9)

for z = 0, where A ≡ −GρπR2Z and γ 2 ≡ (t + Z2)(R2 − Z2). We use
this analytical solution to calculate the gravitational potential rapidly
at any point in space, rather than the usual truncated expansion in
Legendre polynomials.

2.2 Particle placement for SPH simulations

In order to simulate a spinning body using a particle-based method
like SPH, the solution for the density, ρ(rxy, z), found in Section 2.1
must be converted into an appropriate set of particles. Desirable
features of such a partitioning of the volume are that the particles
should have very similar masses, no large-scale symmetries should
be introduced that are not present in the body itself, and the particle
distribution should be locally homogeneous to avoid introducing
scatter in the densities of the particles. For spherically symmetric
objects, these aims have led to approaches that place particles in
nested spherical shells (Saff & Kuijlaars 1997; Raskin & Owen 2016;
Reinhardt & Stadel 2017; Kegerreis et al. 2019). In this subsection,
we build on the work of Kegerreis et al. (2019), generalizing their
stretched equal-area algorithm to the case where particles are placed
into spheroidal isodensity shells.

We start by using SEAGen (Kegerreis et al. 2019) to create a
spherical object with a radial density profile matching the equatorial
profile of our desired spheroid and containing the desired number of
particles, N. SEAGen arranges I spherical shells of particles such
that the final one lines up with the edge of the body and any
interior boundaries between different material layers are similarly
accommodated. The midpoints of these shells have radii Ri repre-
senting the semimajor axes of the shells of particles in our desired
spheroidal object. The semimajor and semiminor axis boundaries of
the spheroidal shells are given by

Ri,out = Ri + Ri+1

2
, Zi,out = Zi + Zi+1

2
,

Ri,in = Ri + Ri−1

2
, Zi,in = Zi + Zi−1

2
, (10)

Figure 1. Illustration of the fractional volume enclosed within a polar angle
θ , V(< θ ), for a spheroidal shell, which dictates the latitudinal arrangement
of particles required to represent a constant density spheroidal shell.

where, by definition, Ri,out = Ri+1,in and Zi,out = Zi+1,in. Using the
solution to equation (1) calculated in Section 2.1, the total mass in
each spheroidal shell, Mi can be computed. The number of particles
in each spheroidal shell, Ni, is then set as the nearest integer to
(Mi/M)N to ensure that the total number of particles in the spheroid
is as close as possible to the desired value N.

The SEAGen algorithm is employed again to create I spherical
shells that are randomly rotated with respect to one another, placing
Ni particles with mass Mi/Ni into the ith shell. To transform from
spherical to spheroidal shells, each particle is: (1) shifted in polar
angle, θ , to reproduce the cumulative mass (or equivalently, volume
or particle number) fraction distribution of the spheroidal shell, fi(<
θ ), then (2) mapped at fixed polar and azimuthal angle to place it on
to the required spheroidal shell.

SEAGen provides us with spherical isodensity shells of particles,
which have a cumulative fractional number that satisfies

fsphere(< θ ) = (1 − cos θ ) /2. (11)

The corresponding function for the ith isodensity spheroidal shell,
fi(< θ ), is more complicated because the shell has a θ -dependent
radius and thickness. For the ith spheroidal shell, bounded by the
spheroids with semimajor and semiminor axis pairs (Ri, in, Zi, in) and
(Ri, out, Zi, out), the cumulative enclosed volume, as illustrated in Fig. 1,
can be written as

Vi(< θ ) =
∫ 2π

0
dφ′

∫ θ

0
sin θ ′

∫ ri,out(θ ′)

ri,in(θ ′)
r ′2dr ′dθ ′

= 2π

3

∫ θ

0

(
ri,out(θ

′)3 − ri,in(θ ′)3
)

sin θ ′dθ ′, (12)

where ri,j (θ ′) =
(

sin2(θ ′)
R2

i,j

+ cos2(θ ′)
Z2

i,j

)−1/2

, with j = {in, out}, is

the distance from the centre of the coordinate system to the inner or
outer spheroid surface at a given polar angle. The solution of equation
(12) is

Vi(< θ ) = 2π

3

[√
2

(
− R2

i,out

Fi,out(θ )
+ R2

i,in

Fi,in(θ )

)
cos θ

+ R2
i,outZi,out − R2

i,inZi,in

]
, (13)
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Table 1. Properties of the planets used as input to WoMa’s iterative solution
of equation (1) for the one- and two-layer test cases.

Property One-layer Two-layer

Mass M (M⊕) 0.640 1
Radius R� = 0 (R⊕) 1 1
Boundary RB, � = 0 (R⊕) – 0.481
Period T� (h) 3.25 2.60
Surface density ρs (kg m−3) 2450.1 2511.8
Surface pressure Ps (Pa) 105 105

Surface temperature Ts (K) 3000 300

where

Fi,j (θ ) =
√

R−2
i,j + Z−2

i,j + (−R−2
i,j + Z−2

i,j

)
cos 2θ.

As the shell is assumed to have a uniform density, we can infer that
the cumulative fractional number of particles in the spheroidal shell
should satisfy fi(< θ ) = Vi(< θ )/Vi(< π ).

Having determined fi(< θ ) for each shell and fsphere(< θ ), we
can now define the polar angle mapping of the particles on a
SEAGen-generated spherical shell to the corresponding spheroidal
shell via

θ → f −1
i

(
fsphere(< θ )

) = f −1
i

(
1 − cos θ

2

)
. (14)

With the particles now distributed in a uniform and unbiased way
with respect to the polar angle, the final step is to map their radial
positions from the spherical shell that SEAGen placed them on to
the desired spheroidal one, using

r →
(

sin2(θ )

R2
i

+ cos2(θ )

Z2
i

)−1/2

r. (15)

3 T E S T S O F T H E IN I T I A L C O N D I T I O N S
G E N E R AT I O N

In this section, we test the WoMa algorithm described in Section 2,
in particular, the iterative method to solve the equation of hydrostatic
equilibrium for a uniformly rotating spheroid and the technique
to distribute particles to produce a low-noise representation of the
solution. To demonstrate the capabilities of WoMa, we construct
one- and two-layer planets using from 105 particles – as are
commonly used in SPH simulations of planetary giant impacts –
up to 109 particles, an order of magnitude more than the highest
numbers to date (Hosono et al. 2017; Kegerreis et al. 2019, 2020),
and evolve them to check how relaxed these initial conditions
actually are.

3.1 Finding the dynamical equilibrium configuration

WoMa has been written in a modular way such that different EoS
and temperature-density relations can be readily included. For our
test planets, we use publicly available EoS: SESAME basalt (Lyon
& Johnson 1992) to describe the material comprising the one-layer
planet, and Tillotson iron and granite (Tillotson 1962; Melosh 1989)
for the two-layer planet core and mantle, respectively. The one-layer
planet is assumed to be isothermal, whereas T = kρ2.5 is chosen for
illustrative purposes for both materials of the two-layer test case.
The other parameters and boundary conditions describing the non-
spinning objects, from which WoMa iterates to find the rotating
bodies, are given in Table 1. Fig. 2 shows, with solid lines, the radial
density profiles for the resulting spherically symmetric solutions.

Figure 2. Analytically solved density profiles for the spherical and spinning
planets. Solid lines represent the initial spherical models, and dashed lines
represent the equatorial and polar density profiles of the corresponding
uniformly rotating fluid planets that solve equation 1. Note that the kinks
in the profile of the one-layer planet reflect phase changes in the SESAME
basalt EoS.

We define the maximally spinning body to be the most rapidly
uniformly rotating one for which the centrifugal force does not
overcome gravity at any point within the object. If this requirement is
violated within our uniformly rotating body, then the force resulting
from the pressure gradient would need to act inwards, leading to an
unphysical situation. For our solid body rotating one- and two-layer
planets, these maximum spins correspond to periods of T�, min = 3.03
and 2.27 h, respectively. We choose very short periods of T� = 3.25
h for the one-layer test, and T� = 2.60 h for the two-layer case,
in order to yield significantly flattened objects. Using grids with
Ng = 105 elements, the iterative procedure within WoMa finds the
equilibrium configurations for our test planets with their respective
rotation periods. The polar and equatorial density profiles are shown,
for both cases, using dashed lines in Fig. 2.

It is important to demonstrate the convergence of this iterative
scheme. To this end, we use the convergence statistic defined in
equation (5), applied to the Ng-sized equatorial density array. This
is simply computing the mean fractional change in the equatorial
density profile over the previous iteration. The evolution with
iteration number of the convergence statistic is shown in Fig. 3.
For the purposes of typical numerical simulations, the precision
necessary is reached in only a few iterations, with both the one- and
two-layer cases able to converge to much higher precision provided
that a differentiable EoS is employed. For a bilinear interpolation of
the SESAME basalt EoS table, Fig. 3 shows that the convergence
reaches a floor, albeit one in this instance that is still sufficiently
low for our purposes. The height of this floor depends somewhat
on the coarseness of the computational grid and can be reduced
significantly using a smoother interpolation, such as the bicubic one
shown in Fig. 3 or the often-used rational function interpolation. For
the results shown here, Ng = 105, and 15 iterations take under 5 min
to compute on a common desktop computer. This resolution will
suffice for the mass of the innermost spheroid to be smaller than the
mass of one particle when placing up to ∼1011 particles.
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Figure 3. Convergence of the equatorial density profile, measured by the
statistic c defined in equation (5), as a function of iteration number. For the
one-layer test, we use two versions of the basalt EoS with either bilinear or
bicubic interpolation of the SESAME tables. Bicubic interpolation ensures
that the derivatives of P(ρ, T) are continuous at every given ρ and T and
produce better convergence. c < 10−3, beneath the dotted line, is more than
sufficient for making SPH initial conditions such as those we use here and is
rapidly achieved by WoMa.

3.2 Particle placement for SPH simulations

To test that the particle placement algorithm leads to low-noise
representations of the test planets, we use WoMa to create particle
representations of both cases using 105, 107, and 109 particles. We
test the accuracy of these representations by computing the particles’
smoothed densities using the SPH code SWIFT (www.swiftsim.com,
Schaller et al. 2016) and 45 nearest neighbours. The distributions
of fractional density errors are shown in Fig. 4. These distributions
are all sharply peaked around zero, with full width at half-maximum
of the peaks of 0.015, 0.012, and 0.005 for the 105, 107, and 109

particle realizations, respectively. Better numerical resolution means
decreased SPH smoothing lengths that sample a smaller range of
densities and lower stochastic errors in the sampled densities.

In addition to the bulk of the particles that lie in the central peak
of the density error distribution, Fig. 4 shows some particles whose
densities differ by up to 40 per cent. These outliers arise at the density
discontinuities of the outer surface and inner boundary between
materials and are an unavoidable consequence of how the standard
SPH formulation computes densities by averaging over a number
of nearby neighbours – a well-known issue when performing SPH
computations of a density profile with discontinuities (Woolfson
2007; Reinhardt & Stadel 2017). Our choice of SPH formulation
with smoothed densities is entirely responsible for this part of the
error distribution, not the particle placement being performed by
WoMa. Fig. 4 shows that using more particles decreases the fraction
of density outliers, because in these cases, a smaller fraction of the
particles lie near to boundaries.

We now test how close to equilibrium our test planets are by using
the SWIFT code to evolve them both, for the three resolution levels,
in a non-rotating reference frame. Each isolated rotating body is
evolved to a simulation time of 20 000 s, i.e. just over 5.5 h. This
is close to two full rotations for both planets and is several times

the time taken for a sound wave to traverse the planet, so it will be
long enough to detect signs of disequilibrium. We measure a rotation
period and a residual velocity for each particle. These are calculated
as

T�,i = 2π

�i

, where �i = vα,i√
x2

i + y2
i

, and

vres,i = vi − � × r i , (16)

i.e. the SPH velocity minus the velocity each particle should have
according to its position and the chosen angular velocity. The
evolution of the median of the particle rotation periods, normalized
by the desired period, and the median residual speed relative to
the escape speed are shown in Fig. 5, along with the 1st and 99th
percentiles. The distribution of particle periods has a median that
matches the desired value to within 1 per cent at all times and very
low scatter by the end of the simulations in all cases. Median residual
speeds never reach 2 per cent of the escape speed and barely exceed
the 1 per cent level for the two higher resolutions. We define a set
of initial conditions as ‘relaxed’ when the median particle speed is
below 1 per cent of the escape speed. In both the one- and two-layer
cases, higher resolutions lead to shorter relaxation times.

We also compute the fractional density error distribution at the
end of the simulation. Full widths at half-maximum of the peaks are
at 0.007, 0.004, and 0.006 for the one-layer test case, and 0.016,
0.008, and 0.019 for the two-layer test case for the 105, 107, and
109 particle realizations, respectively. The final density profiles,
excluding the boundaries, are within 2 per cent of the desired,
analytically computed density for the one- and two-layer tests with
105 particles, and within 1 per cent for the two higher resolutions.

4 THE EFFECTS O F A SPI NNI NG THEI A

In this section, we present a set of five canonical Moon-forming
giant impacts where the impactor Theia is given a different spin in
each simulation. The full parameter space for such a study includes
the spin angular velocity vectors of both proto-Earth and Theia,
but in this initial study, we restrict ourselves to situations with
the spin and orbital angular momenta either parallel or antiparallel
and the target not initially rotating. Collisions between rotating
protoplanets have been considered previously, both for the Moon-
forming collision (Canup 2008; Ćuk & Stewart 2012; Nakajima &
Stevenson 2015; Wyatt et al. 2018) and for the terrestrial planets more
generally (Timpe et al. 2020) but not at particularly high numerical
resolution. Recent studies (Hosono et al. 2017; Kegerreis et al. 2019)
have shown that at least 107 particles can be required to converge
on even large-scale results. The combination of WoMa and SWIFT

enables us to produce better resolved simulations to investigate how
Theia’s spin can alter the outcome of the canonical Moon-forming
collision.

We consider an impact between a target proto-Earth of mass
0.887 M⊕ and an impactor, Theia, of mass 0.133 M⊕. Both are
differentiated into an iron core and rocky mantle, constituting
30 per cent and 70 per cent of the total mass, respectively, modelled
using the Tillotson (1962) iron and granite equations of state. The
Tillotson EoS is widely used for SPH impact simulations due
to its computationally convenient analytical form (Stewart et al.
2019). However, it does not treat phase boundaries or mixed phases
correctly. Since the focus of this paper is the overall range of
outcomes due to the spin of an impactor, the details of the EoS
are not expected to have a significant effect on the main results. The
velocity at impact is chosen to be the mutual escape speed, the angle
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Figure 4. Comparison of our model solution for hydrostatic equilibrium with the SPH density computed at each particle’s location in the initial conditions.
The first, second, and third columns contain the initial conditions with 105, 107, and 109 particles, respectively, and the different colours reflect the results for
the one- and two-layer planets.

Figure 5. Evolution of the median normalized period T�, med/T� (upper row), and median normalized residual speed
∣
∣ vres,med

∣
∣ /vesc (lower row). Shaded

regions represent the 1st and 99th percentiles of the distributions. The first, second, and third columns contain the simulations with 105, 107, and 109 particles,
respectively. A horizontal line shows where the residual velocity has a magnitude that is 1 per cent of the escape speed, a criterion sometimes used to define
when initial conditions are relaxed.

of impact is set as 45◦, and the simulation begins 1 h prior to the
time of contact between the two bodies in order to model the tidal
distortion of the bodies just before impact. We give the iron and
granite layers a temperature–density relation of T∝ρ2. With a 500 K
surface temperature on both bodies, this yields a core temperature
for the proto-Earth of ∼5000 K, similar to the Earth today. All five
simulations are evolved to 100 h and have a mass resolution of 107

particles per Earth mass.
The only difference between our simulations is the rotation rate

of Theia. The minimum period available is 2.6 h, which translates to
a maximum spin angular momentum of LTh,max = 0.15 LEM, where
LEM = 3.5 × 1034 kg m2 s−1 is the current angular momentum
of the Earth–Moon system. We set the spin angular momentum of
Theia, LTh, to be lTh ≡ LTh/LTh,max = − 1

2 , − 1
4 , 0, 1

4 , and 1
2 for

our five simulations. These correspond to rotation periods for the
more and less rapidly spinning Theias of 3.2 and 5.1 h. The orbital
angular momentum of the colliding systems is 1.25 LEM, which is

only ∼ 0.05 LEM larger than the values of the successful canonical
impacts found by Canup & Asphaug (2001).

Fig. 6 shows cross-sections of the moment of contact and a snap-
shot 4 h later for each of the simulations. The most striking feature
at the moment of impact is the difference in Theia’s tidal distortion,
which would have been absent had we started the simulation at the
point of contact, as is often done in planetary giant impact studies
(Canup 2004). The tidal bulge of the more rapidly counter-rotating
impactor (lTh = − 1

2 ) has spun significantly ahead of the line joining
the centres of the proto-Earth and Theia, stretching Theia along its
direction of motion. For the rapidly corotating case (lTh = 1

2 ), Theia’s
spin shifts the tidal distortion to point along the line connecting the
centres of the bodies. Four hours after first contact, the counter-
rotating impacts are near to completing their mergers, whereas the
non-spinning and corotating largest remaining objects have drifted
away from the origin of the coordinate system, chosen as the centre
of mass of the simulation, reflecting the presence of significant
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Figure 6. Snapshots in the early stages of the five giant impacts. Rows represent simulation times of 1 h (top) and 5 h (bottom). Columns represent different
simulations with lTh = − 1

2 , − 1
4 , 0, 1

4 , and 1
2 . 50 slices of thickness z = 0.12 R⊕ are plotted in order of increasing z from z = −6 R⊕ to z = 0, which lies in

the plane containing the centre of mass. The particle colours represent different materials: dark and light grey for Tillotson iron, and red and yellow are Tillotson
granite, in the proto-Earth and Theia, respectively. The origin of the coordinate system is taken to be the centre of mass of all the material in the simulation.

unaccreted mass. The impactor core and mantle material that has
already been deposited into the target is found towards the edges of
the corresponding layers of the target, with more mixing between the
two mantles.

Later snapshots of the five simulations are shown in Fig. 7.
Snapshots are shown at 100 h of simulation time except for the
lTh = 1

2 case, which is at 40 h to capture the highlighted clump before
it flies out of frame. All lTh < 1

2 simulations place the majority of
the mass of Theia either into the Earth or within the Roche radius
(∼3 R⊕), with much of Theia’s core blanketing that of the proto-
Earth. However, the lTh = 0 and 1

4 impacts lead to a large, self-
gravitating clump within the debris disc that extends beyond the
Roche radius. The formation of this clump is sensitive to the initial
spin of Theia, because both counter-rotating impactor scenarios end
in mergers and the rapidly corotating Theia produces a hit-and-run
collision. In order of increasing lTh, the final gravitationally bound
mass is 0.988, 0.987, 0.987, 0.985, and 0.955 M⊕ out of the total
of 1.020 M⊕. The corresponding total angular momenta, in units of
LEM, evolve as follows: 1.17 → 1.17, 1.21 → 1.19, 1.25 → 1.21,
1.28 → 1.23 and 1.32 → 0.78. In the lTh = 1

2 case, the largest of
the many escaping clumps has a mass of 0.0076 M⊕, is taking away
0.047 LEM of the angular momentum, and is 53.5 R⊕ away from the
Earth at 40 h, beyond the edge of the region shown in the lower
right-hand panel of Fig. 7.

The clumps left orbiting the Earth after impact in the simulations
with lTh = 0 and 1

4 have masses of 0.010 and 0.020 M⊕, respectively
– 0.813 and 1.626 times the mass of the present-day Moon. Their
orbits have periods of 40 and 120 h, eccentricities of 0.6 and 0.8,
periapses of ∼4.6 R⊕ and 2.8 R⊕, and spin periods of 10 and 40 h,
respectively. The periapse of the lTh = 0 clump is well outside the
Roche radius, so this proto-Moon, while enduring tidal distortion as
shown in Fig. 7, should survive. For the lTh = 1

4 clump, the periapse
lies just within the Roche radius of 3 R⊕, but if the orbit circularizes
in the same way as can be seen for the lTh = 0 proto-Moon, then this
may enable a portion of it also to survive as a coherent proto-Moon.

The orbiting clump is resolved with over 105 particles in the lTh =
0 and 1

4 simulations, allowing us to study in detail its composition.

Both clumps have ∼ 29 per cent of their mass coming from the
proto-Earth’s mantle, ∼ 1 per cent from Theia’s iron core, and the
remaining ∼ 70 per cent from Theia’s mantle. No iron was present in
the long-lived clumps found in the study of Canup (2004). This may
be the result of small differences in the impact scenarios or simulation
details, but the similarity between our two different clump iron core
mass fractions is striking, particularly given that the iron core of the
Moon itself has been inferred to be 1–2 per cent of the Moon’s total
mass (Viswanathan et al. 2019).

Fig. 8 shows how the mass fraction of proto-Earth increases
linearly towards the surface of the clump. The fractional distance
from centre to surface is computed using an ellipsoidal surface
defined by the inertia tensor to account for the tidal distortion of
the lTh = 0 proto-Moon. Roughly equal amounts of Theia and proto-
Earth are found at the surface of the clump, quite different from
the overall 70/30 split. The results for the clumps in the lTh = 0
and 1

4 simulations continue to be very similar. This distribution of
material is primarily a result of the geometry of the impact and
how the central part of the proto-Moon originates from a reasonably
coherent chunk of Theia that remains self-bound throughout the
impact. Any long-term evolution of this distribution over time,
due to convection and other mixing mechanisms, is not considered
here. However, if subsequent mixing between proto-Earth and Theia
material were incomplete, then this radial variation could establish
a relation between the isotopic difference between these two bodies
and that measured between the Earth and the Moon. The challenge
of interpreting oxygen isotope data means that there is an ongoing
debate as to whether the isotopic compositions of lunar samples and
the Earth are indistinguishable (Young et al. 2016) or not (Herwartz
et al. 2014; Greenwood et al. 2018; Cano et al. 2020).

Outside the Roche radius, in addition to any large clumps, there
is a diffuse debris disc produced in each of our five simulations.
The composition of these discs is shown in Fig. 9 split by material
and provenance. There is more mass in the debris disc than in
resolved orbiting clumps in the two counter-rotating scenarios, with
a more massive disc being formed by the impact with the less rapidly
counter-rotating Theia. For the discs formed in the lTh = 0 and 1

4
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Figure 7. Snapshots at 100 h of simulation time for simulations with lTh = − 1
2 , − 1

4 , 0, 1
4 , and 40 h for the lTh = 1

2 simulation. Blue lines represent the
trajectories of the resulting clumps, and the particle colours are the same as in Fig. 4. The inset boxes show regions of side length 3 R⊕ centred on the target and
1.2 R⊕ for the clump in each panel. An animation of the early evolution of these impacts is available at icc.dur.ac.uk/giant impacts.

simulations, the overall bound mass exterior to the Roche radius
grows with increasing lTh. However, the balance shifts from having a
more massive disc to a more massive clump such that the disc mass
decreases with increasing lTh in this regime. As the clump, or at least
its centre, is rich in Theia, the debris disc becomes less dominated by
Theia, with almost equal amounts of target and impactor mantle when
lTh = 1

4 . Thus, the disc material that may subsequently be accreted
by the orbiting clump has a composition that is very similar to that
already present at the surface of the clump.

When performing the same simulations with 106 particles, we
find the outcomes to be significantly different to those presented
here for the simulations containing 107 particles. For instance, the
simulation with lTh = 0 does not yield an orbiting clump; instead, it
creates a merger similar to the lTh = − 1

4 and lTh = − 1
2 simulations.

Also, while the composition of the mass in bound orbits exterior to
the Roche radius is robust to this change in numerical resolution,
the amount of this material is ∼ 45 per cent larger in the higher
resolution case. A summary of the properties of the debris discs and
the resulting orbiting satellites is shown in Table 2.

5 C O N C L U S I O N S

We have presented a method to compute the hydrostatic equilibrium
state of a uniformly rotating compressible fluid object, described
as a set of concentric oblate spheroids, each with constant density
(Section 2.1). We then described an adaptation of the SEAGen
algorithm of Kegerreis et al. (2019) that places particles to match
precisely this equilibrium configuration (Section 2.2). The combi-
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Figure 8. Radial variation of the mass fraction of target mantle present in
the orbiting clumps after 100 h for the l = 0 (blue) and l = 1

4 (orange)
simulations.

Figure 9. Total bound mass, excluding clumps, outside a cylinder with the
Roche radius centred on the post-impact Earth, as a function of Theia’s initial
spin angular momentum. The different colours represent the different material
components as described in the legend. All results are at a simulation time of
100 h.

nation of these two tasks is performed by our new, open-source
code WoMa, implemented in PYTHON and publicly available at:
https://github.com/srbonilla/WoMa, and the PYTHON module woma
can be installed directly with pip. We tested its capabilities using
simulations containing up to just over 109 SPH particles that were
evolved with the SWIFT code. Relative to previous studies that make
particle-based models of rotating planets by incrementally adding
rotation between repeated relaxation simulations, our method has
the advantages of being fast and allowing precise control over the
structure of the rotating planet to be simulated.

We used this new technique to study the effect of different rotation
rates of Theia in 107-particle simulations of a canonical Moon-
forming impact. Counter-rotating Theia produced quick mergers,
whereas a rapidly corotating Theia led to a hit-and-run collision with
numerous unbound clumps escaping from the Earth. In the zero spin
and slowly corotating Theia cases, a large clump was left orbiting
the Earth after 100 h. The mass and composition of the resulting
debris disc also vary systematically with the initial spin of Theia. Our
findings confirm previous results, using lower resolution studies, that
the outcomes of planetary giant impacts can depend strongly on the
initial spins of the colliding bodies. Therefore, N-body simulations
that aim to trace the formation of terrestrial planetary systems using
models for the aftermath of giant impacts should track the spin of
the forming planets.

The simulation with Theia not spinning initially yields an orbiting
proto-Moon with a periapse at 4.5 R⊕, well outside the Roche
radius of ∼3 R⊕. It has a mass of 0.01 M⊕  0.81 M�, of
which ∼1 per cent is an iron core, and while its overall fraction of
proto-Earth material is only 30 per cent, a radial gradient in material
provenance means that ∼50 per cent of the surface material originates
in the proto-Earth. This fraction is similar to that in the Roche-exterior
debris disc surrounding the Earth. Compared with previous studies
of the canonical impact, which typically found a proto-Earth fraction
of only ∼30 per cent in the potential Moon-forming material, our
value is higher because some of Theia is already hidden deep within
the proto-Moon. These shared characteristics suggest that this proto-
Moon might be a plausible route for forming the Moon.

We also find that the results from our Moon-forming giant
impact simulations can be sensitive to numerical resolution, with
the collision outcome changing in one out of the five scenarios
when increasing the particle number from 106 to 107. However,
while the results presented here have not demonstrated numerical
convergence, they do use more particles than has been typical in
studies of the Moon-forming impact and we are running higher
resolution simulations to test for numerical convergence.

There are also untested uncertainties associated with the formula-
tion of SPH being used, where small-scale artificial clumping could
arise as a consequence of discontinuities in the density field, and
the level of material mixing will also be affected, and the choice of
EoS, which will influence the detailed structure of the debris disc

Table 2. Properties of the resulting debris disc and orbiting satellite for our suite of simulations.

l −1/2 −1/4 0 1/4 1/2
Np 106 107 106 107 106 107 106 107 106 107

Debris disc total mass (M⊕) 0.010 0.014 0.013 0.021 0.011 0.018 0.005 0.016 0.005 0.015
Debris disc target core fraction 0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Debris disc target mantle fraction 0.40 0.37 0.43 0.44 0.46 0.45 0.47 0.46 0.42 0.44
Debris disc Theia core fraction 0.05 0.06 0.03 0.02 0.02 0.04 0.03 0.04 0.04 0.04
Debris disc Theia mantle fraction 0.53 0.55 0.54 0.53 0.51 0.51 0.49 0.49 0.54 0.52
Orbiting clump total mass (M⊕) – – – – 0.002 0.010 0.020 0.020 – –
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and the depletion of volatile elements accreting on to the proto-
Moon. In future work, we will address these uncertainties as well
as investigating a larger volume of parameter space for the impact
scenario to determine how common these orbiting proto-Moons are.
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