Riccardo Scarfone
A hysteretic hydraulic constitutive model for unsaturated soils and application to capillary barrier systems
Scarfone, Riccardo; Wheeler, Simon J.; Lloret-Cabot, Marti
Abstract
Unsaturated soils exhibit water retention hysteresis, with different water retention behaviour during drying and wetting paths. Water retention hysteresis has often been modelled using expressions for the main drying and main wetting water retention curves that are unsatisfactory at low values of degree of saturation. In addition, the effect of retention hysteresis on the unsaturated hydraulic conductivity behaviour has typically not been explicitly considered. This paper presents a new hysteretic hydraulic constitutive model for the water retention and hydraulic conductivity behaviour of unsaturated soils, which is effective and easy to apply. The model includes: (i) main wetting and main drying water retention curves modelled with a modified version of the van Genuchten model, improved at low degree of saturation; (ii) hysteretic scanning water retention curves modelled using a bounding surface approach; (iii) the effect of hydraulic hysteresis on a soil hydraulic conductivity curve (SHCC) model improved at low degree of saturation and including the effect of liquid film conductivity. The new hysteretic hydraulic model is then validated against experimental data. After implementation in the finite element software Code_Bright, the new hydraulic constitutive model is applied in a numerical study of the impact of hydraulic hysteresis on the behaviour of capillary barrier systems (CBSs). Water retention hysteresis, which has typically been neglected in the modelling of the hydraulic behaviour of CBSs, is shown to have a significant impact on: (i) movement and redistribution of water within the finer layer of a CBS; (ii) the phenomenon of water breakthrough across the interface between the finer and coarser layers of a CBS and the subsequent restoration of the CBS after infiltration at the ground surface ceases; (iii) the prediction of evaporation from a CBS into the atmosphere.
Citation
Scarfone, R., Wheeler, S. J., & Lloret-Cabot, M. (2022). A hysteretic hydraulic constitutive model for unsaturated soils and application to capillary barrier systems. Geomechanics for Energy and the Environment, 30, Article 100224. https://doi.org/10.1016/j.gete.2020.100224
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 4, 2020 |
Online Publication Date | Oct 6, 2020 |
Publication Date | 2022-06 |
Deposit Date | Nov 24, 2020 |
Publicly Available Date | Nov 24, 2020 |
Journal | Geomechanics for Energy and the Environment |
Electronic ISSN | 2352-3808 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 30 |
Article Number | 100224 |
DOI | https://doi.org/10.1016/j.gete.2020.100224 |
Public URL | https://durham-repository.worktribe.com/output/1256750 |
Files
Accepted Journal Article
(2.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Relevance of correlation length in geotechnical engineering
(2024)
Presentation / Conference Contribution
Prediction of resilient modulus of unsaturated soils considering inter-particle suction bonding
(2024)
Presentation / Conference Contribution
UKACM Proceedings 2024
(2024)
Presentation / Conference Contribution
Spatial Variability of Soil Properties in Saudi Arabia: Estimation of Correlation Length
(2024)
Presentation / Conference Contribution
Mathematical modelling of pressure induced freezing point depression within soils exhibiting strong capillary pressure effect
(2024)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search