Professor Aristomenis Donos aristomenis.donos@durham.ac.uk
Professor
Incoherent hydrodynamics of density waves in magnetic fields
Donos, Aristomenis; Pantelidou, Christiana; Ziogas, Vaios
Authors
Christiana Pantelidou
Vaios Ziogas
Abstract
We use holography to derive effective theories of fluctuations in spontaneously broken phases of systems with finite temperature, chemical potential, magnetic field and momentum relaxation in which the order parameters break translations. We analytically construct the hydrodynamic modes corresponding to the coupled thermoelectric and density wave fluctuations and all of them turn out to be purely diffusive for our system. Upon introducing pinning for the density waves, some of these modes acquire not only a gap, but also a finite resonance due to the magnetic field. Finally, we study the optical properties and perform numerical checks of our analytical results. A crucial byproduct of our analysis is the identification of the correct current which describes the transport of heat in our system.
Citation
Donos, A., Pantelidou, C., & Ziogas, V. (2021). Incoherent hydrodynamics of density waves in magnetic fields. Journal of High Energy Physics, 2021(5), Article 270. https://doi.org/10.1007/jhep05%282021%29270
Journal Article Type | Article |
---|---|
Acceptance Date | May 3, 2021 |
Online Publication Date | May 28, 2021 |
Publication Date | 2021 |
Deposit Date | Aug 11, 2021 |
Publicly Available Date | Aug 11, 2021 |
Journal | Journal of High Energy Physics |
Print ISSN | 1126-6708 |
Electronic ISSN | 1029-8479 |
Publisher | Scuola Internazionale Superiore di Studi Avanzati (SISSA) |
Peer Reviewed | Peer Reviewed |
Volume | 2021 |
Issue | 5 |
Article Number | 270 |
DOI | https://doi.org/10.1007/jhep05%282021%29270 |
Public URL | https://durham-repository.worktribe.com/output/1237657 |
Files
Published Journal Article (Advance online version)
(1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
You might also like
Nearly critical superfluids in Keldysh-Schwinger formalism
(2024)
Journal Article
Nearly critical holographic superfluids
(2022)
Journal Article
Dissipative effects in finite density holographic superfluids
(2022)
Journal Article
Holographic dissipation from the symplectic current
(2022)
Journal Article
Higgs/amplitude mode dynamics from holography
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search