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1 Introduction

The holographic conjecture predicts that in a certain large-N limit, large classes of con-
formal field theories possess a dual classical gravitational description. Apart from its
fundamental implications about quantum gravity, it provides a powerful tool to study
strongly interacting regimes of quantum field theories which are inaccessible by standard
perturbative techniques.

Over the last decade, the duality has been used to study aspects of strongly coupled
systems. One of its exciting applications concerns condensed matter systems at finite
temperature, chemical potential and magnetic field [1–8]. In that context, the discussion
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was sparkled by the discovery of electrically charged black hole instabilities which lead to
superfluids/superconductors [9–11] from the field theory point of view. In this case, the
order parameter is given by the expectation value of a complex operator which breaks an
internal U(1) symmetry.

Soon after the discovery of holographic superfluid phases, black hole instabilities which
spontaneously break translations were found in [12]. These phases are expected to play
a crucial role in understanding particular physical aspects of various condensed matter
systems which exhibit instabilities such as charge and spin density waves, including the
cuprate superconductors. In this paper we wish to construct the effective theory of long
wavelength excitations in holographic phases with spontaneously broken translations.

In order to make contact with realistic condensed matter systems, one needs to tackle
the extra complication of the ionic lattice which relaxes the momentum of charge and en-
ergy carriers in the system. Momentum relaxation is an essential ingredient in discussing
the low frequency transport properties of real materials. In order to accomplish this holo-
graphically, we need to deform our UV conformal field theory by relevant operators with
source parameters which break translations. In other words, apart from the spontaneous,
we also need to implement explicit breaking of translations.

The construction of these inhomogeneous black hole backgrounds and the study of
the corresponding thermodynamics is technically challenging mainly due to the fact that
unstable modes naturally lead to inhomogeneous backgrounds where the only expected
symmetry left is time translations. However, for certain classes of holographic theories
with a bulk action which is invariant under global U(1) symmetries one can follow a Q-
lattice construction [13] in order to implement both the holographic lattice as well as the
order parameter that spontaneously breaks translations by simply solving ODEs. This
system was introduced in [14, 15] where the focus was on the transport properties and the
derivation of analytic formulae for the DC transport coefficients.

In [16] it was shown that the spontaneous breaking of the global U(1) in the bulk
introduced additional diffusive hydrodynamic degrees of freedom to the system, which are
separate from the universal ones associated to the conservation of heat and electric charge
in the system. From that point of view, the system we are studying is different from the
modulated phases of holography where apart from translations, no additional symmetry
breaking occurs. In this work, our aim is to generalise the results of [17] in order to include
an arbitrary number of internal broken symmetries as well as a finite magnetic field.1

Similar systems with spontaneous breaking of translations via an internal symmetry
have been studied before in [21]. In the absence of an explicit lattice and at zero magnetic
field, the longitudinal hydrodynamic modes included one pair of sound and two diffusive
modes. One of the diffusive modes can be accounted to the incoherent thermoelectric
mode while the second one was associated to the diffusive mode of the internal symmetry
breaking described in [16]. Similarly, the transverse sector of the system contains a single
pair of sound modes. It is known that a finite magnetic field has the effect of combin-

1For numerical computations of quasinormal modes in 3 + 1 boundary dimensions, in the presence of
magnetic fields (for systems preserving translations and without spontaneous symmetry breaking), as well
as the effects of chiral anomaly, see [18–20].
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ing the transverse and longitudinal sound modes to produce a gapped mode and a mode
whose frequency was growing quadratically with the wavenumber [22, 23]. Based on the
hydrodynamic models of [24, 25], reference [26] argued that the corresponding constant
of proportionality is complex, using numerical techniques in a holographic massive grav-
ity model; see also [27] for related work in effective theories for weak explicit background
lattices.

In contrast, in our work, we consider phases with strong explicit background lattices,
and we analytically show that all hydrodynamic modes remain diffusive even in the pres-
ence of a magnetic field. Another aspect of our effective theory is the inclusion of explicit
deformation parameters which perturbatively pin the density waves in the system. As one
might expect, such deformations introduce a collection of gaps for some of the diffusive
modes in our theory. Interestingly, we find that at finite magnetic field pinning also in-
troduces resonance frequencies. As we show, from the retarded Green’s functions point of
view these show up as poles in the lower half plane.

In section 2 we discuss the class of holographic models we are considering along with
some important aspects of their thermodynamics. In section 3 we start by introducing
the model of hydrodynamics that provides an effective description of the long wavelength
excitations, meanwhile identifying the correct current that describes the transport of heat
in our system. We then move on to include the effects of pinning in order to compute the
resulting gap and resonance of the density waves, as well as compute the retarded Green’s
functions and extract their optical properties. We conclude the section by discussing how
to decouple the Goldstone modes from the U(1) and heat currents, and by deriving the
dispersion relations of our hydrodynamic modes. Section 4 contains a number of non-
trivial numerical validity checks of the effective theory of section 3. We summarise our
most important observations and conclude in section 5. Finally, the appendix contains
technical details of the analytical calculations of section 3.

2 Setup

In this section we introduce the holographic model that captures all the necessary ingredi-
ents that we would like to include in our theory. For this reason, we consider holographic
theories which in addition to the metric, they contain a gauge field Aµ and NY + NZ

complex scalar fields Y J and ZI with a global U(1)NY +NZ symmetry. Essentially, this is
a generalisation of the model that we considered in [17] to include an arbitrary number of
complex scalars in the bulk.

The gauge field will be used to introduce the chemical potential µ and the magnetic field
B in the dual field theory. The first NY complex scalars are going to implement the explicit
lattice and should therefore be relevant operators with respect to the UV theory. The
remaining NZ will provide the density wave order parameters in our system. For simplicity,
we consider only four bulk spacetime dimensions, corresponding to a 2 + 1 dimensional
conformal field theory on the boundary, but all our results can easily be generalized to
higher dimensional theories as well.
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The class of theories we are considering is described by the two-derivative bulk action2

Sbulk =
∫
d4x
√
−g

R− V − 1
2

NZ∑
I=1

GI ∂Z
I∂Z̄I +

NY∑
J=1

WJ ∂Y
J∂Ȳ J

− τ

4 F
2

 , (2.1)

with GI , WJ , τ and V being only functions of the moduli bI = |ZI |2 and nJ = |YJ |2. In
this case, the global internal symmetries are represented by the invariance under the global
transformations ZI → eiθIZI and Y J → eiωJY J .

The equations of motion are

Lµν ≡ Rµν −
τ

2

(
FµρFν

ρ − 1
4gµνF

2
)
− 1

2gµνV

− 1
2

(∑
I

GI ∂(µZ
I∂ν)Z̄

I +
∑
J

WJ ∂(µY
J∂ν)Ȳ

J

)
= 0 ,

∇µ
(
GL∇µZL

)
− ∂bL

V ZL − ∂bL
τ

4 ZL F 2

− 1
2

(∑
I

∂bL
GI ∂Z

I∂Z̄I +
∑
J

∂bL
WJ ∂Y

J∂Ȳ J

)
ZL = 0 ,

∇µ
(
WK∇µY K

)
− ∂nKV Y

K − ∂nKτ

4 Y K F 2

− 1
2

(∑
I

∂nKGI ∂Z
I∂Z̄I +

∑
J

∂nKWJ ∂Y
J∂Ȳ J

)
Y K = 0 ,

Cν ≡ ∇µ (τ Fµν) = 0 . (2.2)

In order for our bulk theory to admit an AdS4 solution of unit radius, we demand the
small ZI and Y J expansions

V = −6− 1
2

NZ∑
I=1

m2
ZI
|ZI |2 − 1

2

NY∑
J=1

m2
YJ
|Y J |2 + · · ·

GI = 1 + · · · , WJ = 1 + · · · , τ = 1 + · · · . (2.3)

In this case, the conformal dimensions ∆I and ∆̃J of the dual complex operators satisfy
∆I(∆I − 3) = m2

ZI
and ∆̃J(∆̃J − 3) = m2

YJ
. For the AdS4 vacuum we use a coordinate

system in which the metric reads

ds2 = r2(−dt2 + dx2
1 + dx2

2) + dr2

r2 . (2.4)

In these coordinates, the near conformal boundary expansion for the scalars takes the form

ZI(t, xi, r) = zIs (t, xi) 1
r3−∆I

+ · · ·+ zIv(t, xi) 1
r∆I

+ · · · ,

Y J(t, xi, r) = yJs (t, xi) 1
r3−∆̃J

+ · · ·+ yJv (t, xi) 1
r∆̃J

+ · · · , (2.5)

2Note that, throughout this paper, the scalar indices I, J will not be summed over unless explicitly
stated.
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where z̄Is and ȳJs are the source parameters for the dual operators OZI and OY J .3 The
constants of integration zIv and yJv are related to the VEVs 〈OZI 〉 and 〈OY J 〉 as explained
below.

Provided that the operators OY J are relevant with ∆̃J < 3, the Q-lattice construc-
tion [13] picks the deformation parameters yJs (t, xi) = ψJs e

ikJ
six

i . At this point we see that
we have a set of NY wavevectors kJsi which are determined externally as part of the sources
related to the explicit breaking of the lattice. In our theory, the operators OZI take a VEV
spontaneously suggesting that for the bulk fields ZI we should have zIs = 0. In this case,
the bulk field ZI are going to be zero above a certain critical temperature. As we lower the
temperature of the system, they start developing instabilities which will yield new branches
of black holes breaking the global bulk NZ U(1)’s spontaneously. However, in section 3.3
we will turn on zIs perturbatively in order to study the pinning of the density waves.

Specifically, within the Q-lattice ansatz for the backgrounds, we have that

〈OZI 〉 =
(

∆I −
3
2

)
zIv(t, xi) =

(
∆I −

3
2

)
φIv e

i(kI
i x

i+cI) , (2.6)

up to potential contact terms. Thus, we have a set NZ wavevectors kIi associated to the
order parameters 〈OZI 〉. These are dynamically chosen by the system in a way that the
free energy is minimised, in contrast to kJsi which are fixed by us as part of the boundary
conditions. For the particular holographic systems we are studying, the free energy is
minimised when kIi = 0. However, following the logic of [17, 28], we will still consider
background solutions with kIi 6= 0. In this way the order parameters of the spontaneous
breaking also break translations apart from the internal U(1)’s.

It is useful to define the real operators

ΩI = 1
2
(
e−i(k

I
i x

i+cI)OZI + ei(k
I
i x

i+cI)ŌZI

)
, (2.7)

which have a constant expectation value 〈ΩI〉 =
(
∆I − 3

2

)
φIv = |〈OZI 〉| in the broken

phase. We now perform an internal infinitesimal rotation δεI to the bulk scalar ZI . The
VEVs of the operators OZI and ŌZI transform according to δ〈OZI 〉 = −i 〈OZI 〉 δεI and
δ〈ŌZI 〉 = i 〈ŌZI 〉 δεI and therefore

δ〈ΩI〉 = 〈SI〉δεI ≡ 1
2i
(
e−i(k

I
i x

i+cI)〈OZI 〉 − ei(k
I
i x

i+cI)〈ŌZI 〉
)
δεI . (2.8)

The above suggests that from a microscopic point of view, the operator

SI = 1
2i
(
e−i(k

I
i x

i+cI)OZI − ei(k
I
i x

i+cI)ŌZI

)
, (2.9)

is the right object to focus on in order to study the gapless fluctuations of the system. In
order to make this point clearer, we parametrise the spacetime fluctuations of the VEVs
〈OZI 〉 according to

δ〈OZI
〉(t, xi) =

(
∆I −

3
2

)
ei(k

I
i x

i+cI)
(
δφIv(t, xi) + iφIv δc

I(t, xi)
)
, (2.10)

3In this paper we are using the canonical definition of the one-point function of any real or complex
scalar operator O.

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
2
7
0

where δcI(t, xi) parametrises fluctuations of the phase around its value in the thermal state.
Correspondingly, we see that the fluctuations of the VEV of SI are

δ〈SI〉(t, xi) = 〈ΩI〉 δcI(t, xi) . (2.11)

Therefore, the operators SI capture the gapless mode we wish to study.
Note that the bulk expansions (2.5) imply that the source for ΩI is 2Re[ei(kI

i x
i+cI)z̄Is ]

and the source for SI is −2 Im[ei(kI
i x

i+cI)z̄Is ].
In order to solve the bulk equations of motion more efficiently, we find convenient to

make the field transformations

Y J = ψJ eiσ
J
, ZI = φI eiχ

I
. (2.12)

bringing the bulk action to the form

Sbulk =
∫
d4x
√
−g

(
R− V − 1

2

(∑
J

WJ (∂ψJ)2 +
∑
I

GI (∂φI)2
)

− 1
2

(∑
J

ΨJ (∂σJ)2 +
∑
I

ΦI (∂χI)2
)
− τ

4 F
2
)
,

ΨJ ≡WJ (ψJ)2, ΦI ≡ GI (φI)2 . (2.13)

A consistent ansatz that captures all the necessary ingredients we discussed so far for the
thermal state is

ds2 = −U(r)dt2 + 1
U(r)dr

2 + gij(r)dxidxj ,

A = at(r)dt−Bx2dx1 ,

φI = φI(r) , χI = kIi x
i + cI ,

ψJ = ψJ(r) , σJ = kJsix
i . (2.14)

According to (2.12), the constants cI in our ansatz (2.14) for the background black holes
translate to an overall phase for the complex scalars ZI . The absence of explicit sources in
our asymptotic expansion for the corresponding field does not fix it and we have to leave it
arbitrary. These are essentially the gapless modes associated with the symmetry breaking
in the bulk that we wish to promote to hydrodynamic ones in section 3.

We choose our coordinate system so that the conformal boundary of AdS4 is ap-
proached as we take r → ∞. In this case, the asymptotic expansions of the functions in
our ansatz (2.14) take the form

U → (r +R)2 + · · ·+W (r +R)−1 + · · · ,

gij → δij (r +R)2 + · · ·+ g
(3)
ij (r +R)−1 + · · · , a→ µ+Q (r +R)−1 + · · · ,

ψJ → ψJs (r +R)−3+∆̃J + · · ·+ ψJv (r +R)−∆̃J + · · · ,
φI → φIs (r +R)−3+∆I + · · ·+ φIv (r +R)−∆I + · · · , (2.15)
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where we chose to only show the terms where constants of integration of the relevant ODEs
appear. The constants of integration g(3)

ij that appear in the expansion of the metric have
to satisfy δijg(3)

ij = −1
2
∑
J

(
∆̃J − 3

) (
2
3∆̃J − 1

)
ψJs ψ

J
v which is the gravitational constraint

and yields the conformal anomaly for the stress tensor.
The constant of integration R in (2.15) represents a global shift in the radial coordinate

r. This is fixed by demanding that the finite temperature horizon is at r = 0. Demanding
our background solutions to be regular imposes the near horizon expansion

U (r) = 4π T r + · · · , gij = g
(0)
ij + · · · , a = a(0) r + · · · ,

φI = φI(0) + · · · , ψJ = ψJ(0) + · · · . (2.16)

The equations of motion (2.2) lead to the following equations for the phases of the
complex scalars associated to spontaneous breaking

∇µ
(
ΦI∇µχI

)
= 0 . (2.17)

At this point, it is useful to note that the fields σJ and χI are not well defined when either
ψJ or φI are equal to zero. This certainly happens close to the conformal boundary and in
order to avoid misinterpretations with the holographic dictionary, we discuss asymptotic
expansions in terms of the complex fields Y J and ZI through (2.12). This is well defined
in the regime of perturbation theory that we are interested in.

The asymptotic expansions for the perturbations of φI and χI are

δφI(t, xi, r) = δφIs(t, xi)
1

(r +R)3−∆I
+ · · ·+ δφIv(t, xi)

1
(r +R)∆I

+ · · · ,

δχI(t, xi, r) = ζSI

φIv
(t, xi) 1

(r +R)3−2∆I
+ · · ·+ δcI(t, xi) + · · · . (2.18)

From these expansions and using (2.12) we obtain

δzIs = ei(k
I
i x

i+cI)(iζSI (t, xi) + δφIs(t, xi)) ,

δzIv = ei(k
I
i x

i+cI)(iφIv δcI(t, xi) + δφIv(t, xi)) , (2.19)

where we have used that z̄Is = 0, or equivalently φIs = 0, in the phases we are interested in.
This shows that, up to contact terms, δ〈SI〉 =

(
∆I − 3

2

)
φIv δc

I , and that 2 δφIs is a source
for ΩI while 2 ζSI is a source for SI , consistent with equation (2.11) and the discussion
below it.

In the next subsection we discuss aspects of the thermodynamics of our broken phase
black holes. This will give us the opportunity to define certain quantities that will appear
later in the context of hydrodynamics.

2.1 Thermodynamics

In this subsection we would like to consider the thermodynamics of the background black
holes we are interested in. In order to do this we need to regularise the bulk action (2.1) by

– 7 –
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adding suitable boundary terms which act as counter-terms [29, 30]. The purpose of these
terms is dual, the first is to render the total on-shell action finite. The second is to make
the variational problem well defined, provided we have a unique way to fix the boundary
conditions on our bulk fields.

It is often the case that such terms are not unique and for the purposes of our paper
it is enough to list the following terms [30]

Sbdr =
∫
∂M

d3x
√
−γ (−2K + 4 +Rbdr)

− 1
2

∫
∂M

d3x
√
−γ

[∑
I

(3−∆I)Z̄IZI +
∑
J

(3− ∆̃J)Ȳ JY J

]

+ 1
2

∫
∂M

d3x
√
−γ

[∑
I

1
2∆I − 5 ∂aZ̄

I∂aZI +
∑
J

1
2∆̃J − 5

∂aȲ
J∂aY J

]
+ · · · .

(2.20)

Further counter-terms can be added [31] but these will introduce extra contact terms in
the retarded Green’s functions that we wish to compute from the bulk theory.

In order to compute the free energy of the system we need to consider the Euclidean
version of the total action IE = −iStot. We then need to evaluate the value of IE on
the solution with the analytically continued time t = −itE and the periodic identification
tE ∼ tE + T−1. Since our system extends infinitely in the spatial field theory directions,
the total free energy WFE = T IE is not meaningful and we instead consider the free energy
density wFE

wFE = ε− T s− µρ , (2.21)

where ε, s and ρ denote the energy density, entropy density and electric charge density
respectively. Apart from the thermodynamic data T , µ, B and the explicit lattice data ψJs ,
kJsi our solutions also depend on the wavenumbers kIi which are related to the spontaneous
breaking. Even though different values of cI in (2.14) yield different solutions, the free
energy is independent of those in the spontaneous case, when φIs = 0.4

The first variation of the free energy yields the first law

δwFE = −ρ δµ− s δT +
∑
I

wiI δk
I
i −M δB , (2.22)

where the electric charge and entropy densities can be computed from the black hole
horizon data

ρ = √g(0) τ
(0) a(0), s = 4π√g(0) , (2.23)

and M is the magnetisation and by τ (0) we denote the value of τ when φI and ψJ are
evaluated on the horizon. In order to compute the variation wiI of the free energy with

4Since the bulk U(1) symmetries which shift cI are global, the dual boundary theory does not possess
the corresponding local Noether charges and currents [16, 32]. Based on this fact, [16, 33, 34] argued that
the corresponding gapless modes behave like phasons.
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respect to the wavenumber kIi , we simply vary the total action Stot and use the background
equations of motion to find5

wiI = ∂kI
i
w =

∫ ∞
0

dr
√
gΦI g

ijkIj . (2.24)

Notice that in the spontaneous case this is coming entirely from the variation of the bulk
action (2.1) and it is a finite number. Potential contributions from finite counter-terms
other than those listed in (2.20) would be possible but these would constitute contact
terms which we can ignore for our purposes.

In order to obtain the electric magnetisation M ij of the dual field theory, we need to
perform a straightforward variation of the bulk action (2.1) with respect to the magnetic
field B. Apart from the electric magnetisation, our backgrounds are also going to have a
non-trivial thermal magnetisation M ij

T . Similarly to the electric magnetisation, this is not
immediately obvious from the backgrounds in (2.14) since the homogeneity of our solutions
prevents the appearance of explicit heat magnetisation currents. In order to define it, we
would need to introduce a larger background ansatz than (2.14) in order to include NUT
charges in our metric [35]. Instead of doing that, we simply give the expression for its value
in terms of the background

M ij = −Bε
ij

2

∫ ∞
0

dr
τ
√
g

= M εij , (2.25)

M ij
T = Bεij

∫ ∞
0

dr
τ
√
g
at = MT ε

ij . (2.26)

Apart from the quantities that appear in the first variation of the free energy, we also
find it useful to introduce a set of susceptibilities through the second variation of the free
energy

δs = T−1cµ δT + ξ δµ+
∑
I

νiI δk
I
i ,

δρ = ξ δT + χq δµ+
∑
I

βiI δk
I
i ,

δwiI = −νiI δT − βiI δµ+
∑
L

wijIL δk
L
j . (2.27)

An expression for the susceptibilities νiI , βiI and w
ij
IL in terms of the background can be ob-

tained by simply varying e.g. equation (2.24). Moreover, the susceptibilities νiI and βiI can
also be found by varying the densities in equation (2.23) with respect to the spontaneous
wavenumbers kIi . Even though it is not obvious from the bulk expressions that these two
approaches lead to the same result, this is guaranteed by the thermodynamic Maxwell rela-
tions. This observation will become important in section 3, when we derive the constitutive
relations for the currents and the Josephson equation in a derivative expansion.

5Here and below, √g denotes the square root of the determinant of the spatial metric gij .
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2.2 Perturbations

The first step in order to understand the subset of hydrodynamic fluctuations is to consider
general gravitational perturbations around the background black holes (2.14). As we wish
to study fluctuations which involve both spatial directions on the boundary, we need to
write down the consistent ansatz

δ(ds2) = e−iω vEF+iqjx
j
[
δgµν(r)dxµdxν + 2(iω)−1 Uζi dtdx

i
]
,

δA = e−iω vEF+iqjx
j
[
δaµ(r)dxµ + (iω)−1(Ei − atζi) dxi

]
,

δφI = e−iω vEF+iqjx
j
δφI(r) , δχI = e−iω vEF+iqjx

j
δχI(r) ,

δψJ = e−iω vEF+iqjx
j
δψJ(r) , δσJ = e−iω vEF+iqjx

j
δσJ(r) , (2.28)

where we have also performed a separation of variables. We have introduced the combi-
nation

vEF = t+ S(r) , (2.29)

with S(r) such that close to the horizon at r = 0 it approaches S(r) ∼ 1
4πT ln r + · · · . In

this case, the function vEF approaches the infalling Eddington Finkelstein coordinate and
the perturbation is regular infalling by demanding that

δgtt(r) = 4πT r δg(0)
tt + · · · , δgrr(r) = δg

(0)
rr

4πT r + · · · ,

δgti(r) = δg
(0)
ti + r δg

(1)
ti + · · · , δgri(r) = δg

(0)
ri

4πT r + δg
(1)
ri + · · · ,

δgij(r) = δg
(0)
ij + · · · , δgtr(r) = δg

(0)
tr + · · · , δai(r) = δa

(0)
i + · · · ,

δat(r) = δa
(0)
t + δa

(1)
t r+ · · · , δar(r) = 1

4πT rδa
(0)
r + δa(1)

r + · · · ,

δψJ(r) = δψJ(0) + · · · , δφI(r) = δφI(0) + · · · ,

δχI(r) = δχI(0) + · · · , δσJ(r) = δσJ(0) + · · · . (2.30)

which are compatible with the equations of motion. In order to achieve regularity, the
above need to be supplemented by

−2πT (δg(0)
tt + δg(0)

rr ) = −4πT δg(0)
rt ≡ p ,

δg
(0)
ti = δg

(0)
ri ≡ −vi,

δa(0)
r = δa

(0)
t ≡ $ . (2.31)

It is useful to note that at the current stage of the discussion, the 13 + 2NZ + 2NY

constants δg(0)
tt , δg(1)

ti , δg(0)
ij , δa(0)

i , δa(1)
t , δψJ(0), δφI(0), δχI(0), δσJ(0), $, p and vi are

constants of integration and therefore free. Moreover, we haven’t fixed a gauge choice
and coordinate system for our fluctuations. For example, the choice of δgrµ and δar can
be completely arbitrary, as long as we satisfy the regular boundary conditions prescribed
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in (2.30) and (2.31). After doing so, all the remaining functions will satisfy 9 + 2NZ +
2NY second order ODEs in the radial direction as well as 4 constraints which come from
diffeomorphism invariance and the Gauss constraint coming from gauge invariance.

In order to discuss the constraints which we need to impose, we choose to work in a
radial foliation and we define the normal one form n = dr normal to constant r hypersur-
faces. We now use our equations of motion in (2.2) to define Lµ = Eµρn

ρ and C = Cρnρ
with Eµν = Lµν − 1

2gµν L
ρ
ρ. The four gravitational constraints are simply Lµ = 0 and the

Gauss constraint is C = 0.
The constraints that we need to satisfy can be imposed on any hypersurface with e.g.

constant radial coordinate r. Close to the conformal boundary, they are equivalent to
the Ward identities of charge conservation, diffemorphism and Weyl invariance of the dual
conformal field theory. Similar to [17], we will derive an effective hydrodynamic theory in
section 3 by utilizing a subset of these constraints on a surface close to the background
black hole horizon at r = 0, in terms of the constants that appear in (2.30) and (2.31).

We now define the horizon currents

δQi(0) = 4πT√g(0)v
i ,

δJ i(0) = √g(0)τ
(0)
(
iqi$ + iωgij(0)δa

(0)
j + Ei + via

(0)
t + F ij(0)vj

)
. (2.32)

Building on [35, 36], we derive the horizon constraints that the above currents should
satisfy6

iqi δQ
i
(0) = 2πT iω√g(0)g

ij
(0)δg

(0)
ij , (2.33a)

iqi δJ
i
(0) = iω

√
g(0)

[
τ (0)

(
a(0)

(
δg

(0)
tt + p

4πT

)
+ δa

(1)
t −

iω

4πT
(
δa

(1)
t − δa(1)

r

))

+ 1
2τ

(0)a(0)gij(0)δg
(0)
ij + ∂φI τ (0)a(0) δφI(0) + ∂ψJ τ (0)a(0) δψJ(0)

]
, (2.33b)

iω

(
−δg(1)

ti − g
(1)
il v

l + iqi(δg(0)
tr − δg(0)

rr ) + i ω

4πT (δg(1)
ti − δg

(1)
ri ) + ζi + iqkδg

(0)
ki

)
+ q2vi + qiqjv

j + iqi

(
1 + iω

2πT

)
p− 4πT ζi − τ (0)a(0)

(
iqi$ + iωδa

(0)
i + Ei

)
+ Ψ(0)

J kJs i

(
kIs Jv

j − iωδσJ(0)
)

+ Φ(0)
I kIi

(
kIj v

j − iωδχI(0)
)
− F (0)

ij

(√
g(0)

)−1
δJ j(0) = 0 .

(2.33c)

Close to the conformal boundary at r =∞, the expansion of our functions is

δgtt(r) = · · ·+ δg
(v)
tt

r +R
+ · · · , δgrr(r) = O(r−4) , δgti(r) = · · ·+ δg

(v)
ti

r +R
+ · · · ,

δgri(r) = O(r−3) , δgij(r) = · · ·+
δg

(v)
ij

r +R
+ · · · , δgtr(r) = O(r−2) ,

6It is relatively straightforward to check that the r and t components of the gravitational constraints
are equivalent in the r → 0 limit.
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δai(r) = δa
(v)
i

r +R
+ · · · , δat(r) = δa

(v)
t

r +R
+ · · · , δar(r) = O(r−2) ,

δψJ(r) = δψJ(v)

(r +R)∆̃J
+ · · · , δφI(r) = δφI(v)

(r +R)∆I
+ · · · ,

δχI(r) = ζSI

φIv
(r +R)2∆I−3 + · · ·+ δcI + · · · , δσJ(r) = δσJ(v) (r +R)2∆̃J−3 + · · · , (2.34)

where we have chosen to only show the undetermined terms involving the constants of
integration of the second order ODE’s we need to solve. We have also included the constants
ζSI which represent the sources for the operators SI we discussed in section 2 and which
we need to fix. For the components which we are free to choose by using diffeomorphism
and gauge invariance, we only show their desired behaviour close to the boundary as they
offer no additional information as far as the constants of integration are concerned.

The remaining 9 + 2NZ + 2NY constants of integration δg(v)
tt , δg(v)

ti , δg(v)
ij , δa(v)

t , δa(v)
i ,

δψJ(v), δφI(v), δcI and δσJ(v) together with the 13 + 2NZ + 2NY coming from the horizon
expansion, will fix a unique solution of the 9 + 2NZ + 2NY second order ODE’s and the 4
constraints. In the next section we construct solutions which correspond to the late time,
long wavelength hydrodynamic modes of the boundary theory.

3 Linearised hydrodynamics

In this section we study the hydrodynamic limit of the fluctuations that we introduced in
subsection 2.2. In subsection 3.1 we discuss the construction of these modes up to second
order in the derivative expansion. This allows us to write an effective hydrodynamic theory
for the conserved currents of the system and its gapless modes related to spontaneous
breaking in the bulk in subsection 3.2.

Having a complete effective theory for our fluctuations, in subsection 3.3 we exam-
ine the gap induced for the spontaneous density waves sliding modes, by perturbatively
small deformations for the operators ΩI . To illustrate, we specialise to the isotropic case
where we find that apart from a gap, the theory also develops resonance frequencies. In
subsection 3.4 we study the retarded Green’s functions of the operators in our theory at
finite frequency and we give the precise way that the poles of subsection 3.3 influence the
transport properties.

We then move on to give more general, model-independent, Kubo formulas for some
of the transport coefficients in subsection 3.5. There, we also define heat and electric
current operators which decouple from the Goldstone modes, and we discuss some of their
properties. Finally, in subsection 3.6 we give an algebraic equation whose solutions yield
the dispersion relations of our hydrodynamic modes. Even though we are not able to find
the solutions in closed form, we can show that all our modes are purely diffusive at the order
we are working. An interesting outcome of our results is that, after correctly identifying the
heat current, the thermodynamic coefficients wiI all drop out from physically interesting
quantities.
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3.1 Hydrodynamic perturbations

In their infinite wavelength qi → 0 limit, the hydrodynamic modes we wish to study will
reduce to a uniform distribution of energy, electric charge and phase shift of the complex
scalar ZI which break the global symmetries in the bulk. In order to keep track of our
expansion we scale qi → εqi with ε a small number and expand the frequencies and radial
functions in the bulk according to

ω = ε ω[1] + ε2 ω[2] + · · ·
δX(r) = δX[0](r) + εδX[1](r) + ε2δX[2](r) + · · · , (3.1)

where δX(r) can be any of the functions that appear in the ansatz for the perturba-
tion (2.28).

A key point of our construction is the leading piece of the ε expansion which according
to our earlier discussion has to reduce to

δX[0] = DXb

DT
δT[0] + DXb

Dµ
δµ[0] +

∑
I

∂Xb

∂cI
δcI[0] . (3.2)

The functions Xb represent the background fields of the black hole in equation (2.14). In
order to generate the perturbations which satisfy the correct boundary conditions (2.30),
(2.31) and (2.34), at the same time with a simple partial derivative with respect to T , µ
and cI we also need to perform the perturbative coordinate and gauge transformation [36]

t→ t+ δT[0] T
−1 g(r), A→ A− δµ[0] d(t+ g(r)) . (3.3)

As expected, the boundary condition requirements for our perturbations do not uniquely
fix g(r) in the bulk. It is enough to choose it such that close to the conformal boundary
it vanishes sufficiently fast while close to the horizon at r = 0 it approaches g(r) →
ln r/(4πT ) + g(1) r + · · · .

Choosing the perturbations as in (2.28) leads to an inhomogeneous system of differen-
tial equations coming from the bulk equations of motion (2.2) at the perturbative level. It
is clear from the above construction that the seed solution (3.2) satisfies the corresponding
homogeneous system of equations [17]. This suggests that we can add them at each order
in the ε expansion (3.1) and therefore consider the split,

δX[n] = δX̃[n] + DXb

DT
δT[n] + DXb

Dµ
δµ[n] +

∑
I

∂Xb

∂cI
δcI[n] , (3.4)

with δX̃[n] a solution to the inhomogeneous problem which is sourced by lower order terms
of the solution. Following closely the analysis of [17], we can show that the eigenmodes
of the system necessarily have ω[1] = δT[0] = δµ[0] = 0. Therefore the variation of the
temperature and chemical potential starts at order O(ε).

The next to leading part of the bulk solution δX[1] will only be driven by a shift in the
background phases of the complex scalars according to δχI = eiε qix

i
δcI[0]. Moreover, since

we are examining the equations of motion at order O(ε), it is only the first derivatives of
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the varying exponential that enter the source of the inhomogeneous part δX̃[1]. Effectively
we can say that up to order ε we have

χI ≈ kIi xi + cI + eiε qix
i
δcI[0] ≈ (kIi + iε qi δc

I)xi + cI + δcI + · · · . (3.5)

The above implies that δX̃[1] will simply be the change of the background solution under
δkIi = i εqi δc

I . The same pattern will appear at all orders in the ε expansion, leading us
to the further split of the solution to the inhomogeneous problem according to [17]

δX̃[n] = δX[n] + i
∑
I

∂Xb

∂kIi
qi δc

I
[n−1] . (3.6)

In the end, the whole solution is determined by the variations δT , δµ and δcI and so
does the horizon fluid velocity vi, the local chemical potential $, and the vector potential
δa

(0)
j . More specifically, we can identify

p = 4π
(
ε δT[1] + ε2 δT[2] + · · ·

)
, vi = ε2 vi

[2] + · · · , $ = −
(
ε δµ[1] + ε2 δµ[2] + · · ·

)
,

δg
(0)
ij = ε

(
∂g

(0)
ij

∂T
δT[1] +

∂g
(0)
ij

∂µ
δµ[1] + i

∑
I

∂g
(0)
ij

∂kI
i

qiδc
I
[0] + ε δg

(0)
[2]ij + · · ·

)
,

δφI(0) = ε

(
∂φI(0)

∂T
δT[1] + ∂φI(0)

∂µ
δµ[1] + i

∑
L

∂φI(0)

∂kL
i

qiδc
L
[0] + ε δφ

I(0)
[2] + · · ·

)
,

δψJ(0) = ε

(
∂ψJ(0)

∂T
δT[1] + ∂ψJ(0)

∂µ
δµ[1] + i

∑
I

∂ψJ(0)

∂kI
i

qiδc
I
[0] + ε δψ

J(0)
[2] + · · ·

)
,

δχI(0) = δcI
[0] + ε δχ

I(0)
[1] + · · · , δσJ(0) = ε δσ

J(0)
[1] + · · · . (3.7)

The above identification will prove useful in the next subsection where we give the effective
theory of hydrodynamics that governs the fluctuations up to and including δX[1] in our
expansion.

3.2 The effective theory

An important point of our construction is the way that we choose to impose the grav-
itational and Gauss constraints. As we discussed in section 2, these constraints should
be imposed at once on any hypersurface at e.g. constant radial coordinate r. From the
dual field theory point of view, the natural choice for this hypersurface would be near the
conformal boundary as they become equivalent to the Ward identities of diffeomorphism,
Weyl and global U(1) invariance. More specifically, the constraints Lb = 0 and C = 0 give

∇aJa = 0

∇aT ab = FbaJ
a + 1

2

(∑
J

OY J∇bȳJs +
∑
I

OZI∇bz̄Is + c.c.
)
, (3.8)

with F = dA the field strength of the external source one-form Aa and ȳJs , z̄Is are the
sources for the complex scalar operators.
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Contracting the stress tensor Ward identity with a vector Λb gives

∇a
[
(T ab +AbJ

a)Λb
]

= 1
2T

ab LΛgab + JaLΛAa

+ 1
2

(∑
J

OY JLΛȳJs +
∑
I

OZILΛz̄Is + c.c.
)
. (3.9)

The thermal gradient ζ and electric field E perturbations enter the boundary metric gab
and external field Aa according to

δ
(
ds2
)

= 2 (iω)−1 ζi e
−iω t+iqjx

j
dt dxi, δA = (iω)−1 (Ei − µ ζi) e−iω t+iqjx

j
dxi , (3.10)

along with the source δzIs for the scalar field

δzIs = ei(k
I
i x

i+cI)(iζSI + δφIs) e−iω t+iqix
i
. (3.11)

We are now going to make the choice Λ = ∂t and perturbatively expand the contracted
Ward identity to give the electric charge and heat conservation

∂aδJ
a = 0

∂aδQ
a = 0 (3.12)

with δQa = −δT at − µ δJa. Equations (3.12) define two conserved currents at the level of
first order perturbation theory. From the point of view of the effective theory, this is a good
starting point in order to give a closed system of equations, provided that we can express
these currents in terms of the hydrodynamic variables δµ̂, δT̂ and δĉI [17]. However, we
will see soon that, in the phases we are interested in, the current δJaH which describes the
transport of heat is different from δQa. As we have argued in the previous subsection, the
time derivatives scale according to ∂t ∝ O(ε2) while for the spatial derivatives we have
∂i ∝ O(ε). This suggests that we need to consider the charge densities up to order O(ε)
and the transport currents up to order O(ε2) in (3.12).

We will write our theory in position space where all our functions will be denoted by
hats. Moreover, from now on, we find it useful to define hatted thermodynamic quantities
which are local functions of the dynamical temperature, chemical potential and phasons.
For example, we define ŵ ≡ w(T + δT̂ , µ+ δµ̂, kIi + ∂iδĉ

I).
In appendix A.2 we relate the boundary currents δJa, δQa to the horizon currents we

have defined in equation (2.32) in the ε-expansion. More specifically, we can write

δ〈ŜI〉 = 〈ΩI〉 δĉI ,
δĴ i = δĴ i(0) + δĵim ,

δQ̂i = δQ̂i(0) −
∑
I

wiI ∂tδĉ
I + δq̂im , (3.13)

where we have defined the divergence free magnetisation currents

δĵim = −M ij ζ̂j + ∂jM̂
ij ,

δq̂im = −M ijÊj − 2M ij
T ζ̂j + ∂jM̂

ij
T . (3.14)
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At this point it is important to identify the correct current δJ iH that describes the
transport of heat. For this reason, using the first law (2.22), we write the conservation
equations as7

∂tρ̂+ ∂iδĴ
i = 0 ,

∂t

(
T ŝ+

∑
I

wiI ∂iδĉ
I

)
+ ∂iδQ̂

i = 0⇒

T ∂tŝ+ ∂i

(
δQ̂i +

∑
I

wiI ∂tδĉ
I

)
= 0 . (3.15)

The conservation equation (3.15) implies that up to magnetisation current contributions,
the currents that correctly describe the transport of heat and electric charge are δĴ iH =
δQ̂i +

∑
I w

i
I∂tδĉ

I = δQ̂i(0) and δĴ i = δĴ i(0). In terms of operators, we can write

Ĵ iH = Q̂i +
∑
I

wiI
〈ΩI〉

∂tŜ
I . (3.16)

At first sight, it might seem surprising that the horizon heat current correctly describes
the transport of heat. However, one might have expected this to happen since at the level
of thermodynamics the entropy density of the system is determined by the horizon. This
also ties well with the common lore in holography that dissipation is captured by horizon
physics.

The above discussion suggests that the physically relevant current to discuss is Ĵ iH
rather than Q̂i. In the end, we would like to build our theory of hydrodynamics around
the conserved currents Ĵ iH and Ĵ i and the light modes associated to the operators SI . The
corresponding triplet of sources is {ζi, Ei, ξSI} for our choice of operators and by examining
the source terms in the deformed action we can easily show that

ξSI = ζSI −
wiI
〈ΩI〉

ζi . (3.17)

Note that, as discussed in section 2.1, thermodynamically preferred phases satisfy wiI = 0,
in which case Ĵ iH = Q̂i.

Given these results, we are able to express the boundary transport currents in terms
of δT[1], δµ[1], δcI[0] and vi[2] at order O(ε2). However, in [17] we have shown that within
perturbation theory we can choose to impose the constraint Li = 0 on a hypersurface close
to the horizon. This allows us to integrate out the horizon fluid velocity vi[2] and therefore
obtain local expressions for the currents in terms of our hydrodynamic variables

δJ i = σijH

(
Êj − ∂jδµ̂

)
+ T αijH

(
ζ̂j − T−1∂jδT̂

)
−
∑
I

γiI ∂tδĉ
I

δJ iH = T ᾱijH

(
Êj − ∂jδµ̂

)
+ T κ̄ijH

(
ζ̂j − T−1∂jδT̂

)
−
∑
I

λiI ∂tδĉ
I . (3.18)

7It would be interesting to go beyond linear hydrodynamics and examine whether demanding positivity of
entropy production (according to an appropriately defined entropy current) leads to constraints on the trans-
port coefficients defined below, as happens generally [37, 38], as well as in related contexts [21, 26, 39–41].
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For the specific holographic model we are considering, the transport coefficients can be
expressed in terms of horizon data and thermodynamic susceptibilities according to

σikH = σik0 + 4πρ2

s
N i

j

(
B−1

)jl
Nlk , αikH = 4πρN i

j

(
B−1

)jk
,

ᾱikH = 4πρ
(
B−1

)ij
Njk , κ̄ikH = 4πTs

(
B−1

)ik
,

γiI = 4πTρN i
j

(
B−1

)jk
ηIk , λiI = 4πT 2s

(
B−1

)ij
ηIj , (3.19)

where we have used the definitions

σij0 = τ (0)s

4π gij(0) , Nik = δi
k + B

ρ
εijσ

jk
0 , ηIi = 1

4πT Φ(0)
I kIi ,

Bij =
∑
J

Ψ(0)
J kJsik

J
sj +

∑
I

Φ(0)
I kIi k

I
j + τ (0)B2 εikεjlg

kl
(0) −

4πρ
s
Bεij . (3.20)

from appendix A.3, and indices in N are raised and lowered with the horizon metric g(0)ij .
We now turn our attention to the pseudo gapless degrees of freedom δcI related to

the density waves in our system. In order to introduce pinning to our system we turn
on a perturbative deformation δφIs ∝ O(ε2) in the background asymptotics (2.15). The
constitutive relations (3.18) remain unchanged [17], while in appendix A.1 we integrate the
equation of motion (2.17) to obtain the effective Josephson relation

θI ∂tδĉ
I + 〈ΩI〉 δφIs δĉI + ηIi δĴ

i
H − ∂iŵiI = 〈ΩI〉 ξ̂SI , (3.21)

with the transport coefficient

θI = sΦ(0)
I

4π . (3.22)

Equation (3.21) holds for each capital index I separately, so we have a set of NZ Josephson
relations. Along with the current conservation equations (3.15), it defines a closed system
of equations for the dynamical fields δT̂ , δµ̂ and δĉI .

Let us now make some comments on the above holographic results. From (3.18)–(3.20)
we observe that, as in the case without spontaneous symmetry breaking [35], the horizon
DC conductivities σikH , αikH , ᾱikH , κ̄ikH are solely determined by Bij and σij0 , along with other
thermodynamic quantities. The coupling to the massless modes δĉI is determined by one
extra quantity, ηIi . The reason is that the Josephson relation (3.21) only involves the
heat current J iH and not the U(1) current. The coupling to the U(1) current has been
considered from a hydrodynamic perspective in various contexts in [21, 24, 25, 42]. It
would be interesting to find a holographic model which realizes that.

In the following subsections we study the gap of hydrodynamic modes after turning
on the pinning parameters δφIs as well as the dispersion relations without pinning. Finally
we compute the finite frequency retarded Green’s functions which will help us extract the
transport properties of the system.
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3.3 Pseudo-gapless modes

In order to identify the gapped modes in our effective theory we need to study perturbations
with the sources switched off and with wavevector qi = 0. They belong to the Goldstone
mode sector, which leads us to consider the ansatz

δT̂ = 0, δµ̂ = 0, δĉI = δcI0 e
−iδωgt . (3.23)

This ansatz automatically solves the current conservation equations (3.15) while the Joseph-
son relation (3.21) gives the matrix equation for the vector of amplitudes δcI0∑

M

(
i(M−1)LM + δLMδωg

)
δcM0 = 0 , (3.24)

where we have defined the matrix8

ML
M =

[
〈ΩL〉 δφLs

]−1 [
θLδLM − ηLi λiM

]
= s

4π〈ΩL〉δφLs

(
Φ(0)
L δLM −

(
B−1

)ij
ηLi η

M
j

)
.

(3.25)

In order for equation (3.24) to have non-trivial solutions, the matrix multiplying the vector
of amplitudes should not be invertible. Equating the determinant of this matrix to zero
gives an algebraic equation which determines the NZ different values for the gaps δωg in
terms of the eigenvalues of the matrixM−1.

In order to illustrate the effect of the magnetic field on the gaps of the theory we
consider a simple case with NZ = NY = 2 and which apart from the U(1)4 the model has
a Z2 × Z2 symmetry which exchanges Z1 ↔ Z2 and Y 1 ↔ Y 2. This allows us to consider
an isotropic background which can be achieved by choosing

kIi = k δIi , kJsi = ks δ
J
i ψJs = ψs, δφIs = δφs . (3.26)

The symmetries of the model along with the choice of boundary parameters leads to data
of integration in which the internal indices can be suppressed, allowing us to write

〈ΩI〉 = 〈Ω〉 , ΦI(0) = Φ(0) , ΨJ(0) = Ψ(0) ,

g(0)ij = δij G(0) , s = 4πG(0) , σij0 = τ (0)δij ≡ σ0δ
ij . (3.27)

This simplifies the quantities

Bij = 4π
[(

k2
sΨ(0)

4π + k2Φ(0)

4π + σ0
s
B2
)
δij − ωc εij

]
, (3.28)

where we see that the magnetic field introduces an antisymmetric piece in the matrix Bij .
In the above

ωc = ρB/s , (3.29)

8We remind the reader that capital indices are not being summed over.
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can be identified with the cyclotron mode frequency [1, 2]. As a consequence, the matrix
M will now have complex eigenvalues leading to the gaps

δω±g = −i 4π 〈Ω〉 δφs
sΦ(0)

(
1 + k2Φ(0)/4π

k2
sΨ(0)/4π + σ0B2/s± iωc

)
. (3.30)

for the pseudo-massless modes. It is easy to see that in zero magnetic field, these modes lie
on the lower imaginary semi-axis and they agree with the expressions that were obtained
in [17]. Moreover, due to the isotropy of the model and background we are considering,
they also lie at the same point. However, the characteristic frequency of our nearly gapless
modes has a resonant frequency apart from a gap at finite magnetic field.

It is interesting to consider the extreme limits for the behaviour of the poles (3.30) of
our simple example. In the limit where B is the smallest parameter9 we have a perturba-
tively small correction to the results of [17]

δω±g = −i 4π 〈Ω〉 δφs
sΦ(0)

(
1 + k2Φ(0)

k2
sΨ(0) ± 4πi k

2Φ(0)

k4
sΨ(0) 2ωc +O(B2)

)
. (3.31)

We therefore see that for small magnetic fields the two modes split and they move hori-
zontally in opposite directions in the complex plane. In the opposite limit, where B is the
largest scale in the system we have10

δω±g = −i 4π 〈Ω〉 δφs
sΦ(0) +O(B−2) , (3.32)

and the two frequencies become degenerate once again, at the value which is given by the
k → 0 limit of (3.30). The same result is obtained if we keep the filling fraction ρ/B

finite while taking B →∞. It is interesting to note that the expression (3.32) is the same
with [16] but in a different thermal state. This situation is relevant to weak lattices and
close to the phase transition at T ∼ Tc.

A third, distinct possibility which is relevant to weak lattices and magnetic fields is
when σ0B � ρ and B � k2

sΨ(0), B � k2Φ(0), giving

δω±g = ±k
2〈Ω〉
s ωc

δφs + · · · . (3.33)

In this case we see that the resonant part dominates the poles related to the phase relax-
ation. The expression (3.33) agrees with the prediction from hydrodynamics in the pseudo-
spontaneous regime once we identify the pinning frequency ω2

0 ∼ k2〈Ω〉δφs [23, 24, 43].
Note that the full expression (3.30) holds for finite magnetic field; in particular, we

nowhere assumed that B is perturbatively small. All the background quantities however,
including the horizon values Ψ(0),Φ(0), depend implicitly on B as well as ks. Thus, the
scaling of δωg with B in the above expressions can be determined analytically (or, when
not possible, numerically) from the properties of the ground state.11 In particular, it is
not straightforward to compare our results to [26], which found a B1/2 scaling for large B
using a holographic massive gravity model.

9To be precise, the regime where (3.31) is valid is σ0B � ρ and ωc � k2Φ(0).
10In the regime σ0B � ρ and B � k2

sΨ(0), k2Φ(0).
11The only exception is (3.31), since we expect the various background quantities to be continuously

connected to the corresponding ones of the B = 0 state.
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3.4 Finite frequency response

In this subsection we study linear response at zero wave number qi = 0. In order to achieve
this we turn on all our sources with a finite frequency ω and look for a solution to the
conservation law equations (3.15) and Josephson relation (3.21). A suitable ansatz for this
purpose is

δT̂ = δT[1] e
−iωt , δµ̂ = δµ[1] e

−iωt , δĉI = δcI[0] e
−iωt . (3.34)

After combining the transport heat current (3.18) and the Josephson relation (3.21),
we obtain

δcI[0] = i
∑
K,L

[(
ω + iM−1

)−1
]I

LΛLK
(
〈ΩK〉 ξSK − TηKj ᾱjkH Ek − TηKj κ̄jkH ζk

)
,

(
Λ−1

)I
P ≡ 〈ΩI〉 δφIsMI

P = θIδIP − ηIi λiP . (3.35)

Plugging this solution back in the constitutive relations (3.15) we obtain the VEVs for the
scalar fields SI and the transport currents in terms of the sources ζi, Ei and ξSI according to

δ〈SI〉 = 〈ΩI〉 δcI[0] ,

δJ i = σijHEj + TαijHζj + iω
∑
I

γiI δc
I
[0] ,

δJ iH = T ᾱijHEj + T κ̄ijHζj + iω
∑
I

λiI δc
I
[0] . (3.36)

In order to extract the retarded Green’s functions, we need to consider the derivative of
the VEVs with respect to the time dependent sources. Since we are only considering linear
response, we can write12

δ〈C〉 = (iω)−1GCJk
H
ζk + (iω)−1GCJk Ek +

∑
I

GCSI ξSI , (3.37)

for any operator C in our theory. After a little algebra we obtain the expressions

σik ≡ (iω)−1GJiJk = σikH + ωT
∑
I,L,K

γiI

[(
ω + iM−1

)−1
]I

LΛLKηKj ᾱjkH ,

Tαik ≡ (iω)−1GJiJk
H

= TαikH + ωT
∑
I,L,K

γiI

[(
ω + iM−1

)−1
]I

LΛLKηKj κ̄jkH ,

T ᾱik ≡ (iω)−1GJi
HJ

k = T ᾱikH + ωT
∑
I,L,K

λiI

[(
ω + iM−1

)−1
]I

LΛLKηKj ᾱjkH ,

T κ̄ik ≡ (iω)−1GJi
HJ

k
H

= T κ̄ikH + ωT
∑
I,L,K

λiI

[(
ω + iM−1

)−1
]I

LΛLKηKj κ̄jkH ,

12Generally, the Green’s functions of two operators A and B satisfy GȦB = −iωGAB + i〈[A,B]〉 =
−iωGAB + i (χAB − χBA). However, the therodynamics of our model leads to vanishing susceptibilities
when A = SI and B is the electric or heat current.
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GJiSK = −〈ΩK〉ω
∑
I,L

γiI

[(
ω + iM−1

)−1
]I

LΛLK ,

GSKJi = 〈ΩK〉ωT
∑
I,L

[(
ω + iM−1

)−1
]K

IΛILηLj ᾱ
ji
H ,

GJi
HS

K = −〈ΩK〉ω
∑
I,L

λiI

[(
ω + iM−1

)−1
]I

LΛLK ,

GSKJi
H

= 〈ΩK〉ωT
∑
I,L

[(
ω + iM−1

)−1
]K

IΛILηLj κ̄
ji
H ,

GSISK = i 〈ΩI〉〈ΩK〉
∑
L

[(
ω + iM−1

)−1
]I

LΛLK . (3.38)

The non-trivial frequency dependence in the above thermoelectric conductivities includes
only the horizon quantities ᾱijH , κ̄

ij
H , due to the fact that the Goldstone couples only to the

heat current, (3.21). Moreover, from the above expressions we see that the gaps of the
previous subsection determine the poles of the retarded Green’s functions (3.38). From
these expressions it is clear that the pseudo-gapless modes we discussed in section 3.3
couple to the conserved currents of our system. It should be emphasised that the Green’s
functions in equation (3.38) attain the most general form possible. In particular, GSISK is
simply controlled by the existence of a pole related to the pseudo-spontaneous symmetry
breaking (subject to the presence of the gap), while SI couple to the currents only through
their time derivatives, giving an additional factor of ω in the numerator. Thus, we expect
to see the same structure in more general theories of this type.

Given the time reversal symmetry of the theory, as a non-trivial check, we can see that
the expressions above satisfy the Onsager relations GCD(ω)

∣∣∣
B

= εCεDGDC(ω)
∣∣∣
−B

, with
εC,D = ±1 depending on how the operators C and D transform under time reversal. In
particular, we find that

G
JiJj

H
(ω, 0)

∣∣∣
B

= G
Jj

HJ
i(ω, 0)

∣∣∣
−B

, GSJi(ω, 0)
∣∣∣
B

= −GJiS(ω, 0)
∣∣∣
−B

,

GSJi
H

(ω, 0)
∣∣∣
B

= −GJi
HS

(ω, 0)
∣∣∣
−B

, G
Ji

HJ
j
H

(ω, 0)
∣∣∣
B

= G
Jj

HJ
i
H

(ω, 0)
∣∣∣
−B

,

GJiJj (ω, 0)
∣∣∣
B

= GJjJi(ω, 0)
∣∣∣
−B

, GSISK (ω, 0)
∣∣∣
B

= GSKSI (ω, 0)
∣∣∣
−B

. (3.39)

To show (3.39), it is enough to use the identities

N i
j

∣∣∣
B

=Nj
i
∣∣∣
−B

, Bij

∣∣∣
B

=Bji

∣∣∣
−B

, γi
I

∣∣∣
B

=TηI
j ᾱ

ji
H

∣∣∣
−B

, λi
I

∣∣∣
B

=TηI
j κ̄

ji
H

∣∣∣
−B

,

σij
H

∣∣∣
B

=σji
H

∣∣∣
−B

, ᾱij
H

∣∣∣
B

=αji
H

∣∣∣
−B

, κ̄ij
H

∣∣∣
B

= κ̄ji
H

∣∣∣
−B

,

[Λ−1 · (ω+ iM−1)]I M

∣∣∣
B

=[Λ−1 · (ω+ iM−1)]M I

∣∣∣
−B

. (3.40)

which hold by construction.
The explicit expressions (3.38) show that the limits ω → 0 andM→ 0 do not commute,

as also discussed in [17, 44]. Specifically, taking the DC limit ω → 0 while the gap remains
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finite, reduces the conductivities to the corresponding horizon conductivities, first obtained
in [35], as well as the expected Goldstone mode susceptibility χIK ,13

σikDC = σikH , TαikDC = TαikH , T ᾱikDC = T ᾱikH ,

T κ̄ikDC = T κ̄ikH , χIK ≡ GSISK = 〈Ω
I〉

δφIs
δIK , (3.41)

with the rest of the correlators vanishing. However, when we first take δφIs → 0, transport
at zero-frequency gets modified by the Goldstone modes

σikDC =σikH +T
∑
I,K

γiIΛIKηKj ᾱjkH , TαikDC =TαikH +T
∑
I,K

γiIΛIKηKj κ̄jkH ,

T ᾱikDC =T ᾱikH +T
∑
I,K

λiIΛIKηKj ᾱjkH , T κ̄ik (ω=0)=T κ̄ikH +T
∑
I,K

λiIΛIKηKj κ̄jkH ,

GJiSK (ω=0)=−〈ΩK〉
∑
I

γiIΛIK , GSKJi (ω=0)=〈ΩK〉T
∑
I

ΛKIηIj ᾱ
ji
H ,

GJi
HS

K (ω=0)=−〈ΩK〉
∑
I

λiIΛIK , GSKJi
H

(ω=0)=〈ΩK〉T
∑
I

ΛKIηIj κ̄
ji
H ,

(3.42)

while GSISK diverges as

GSISK ∼ i 〈ΩI〉〈ΩK〉 ΛIK
ω

. (3.43)

3.5 Decoupling the Goldstone modes

Given the results of the previous subsection we can proceed to obtain Kubo formulas, which
can be taken as the fundamental definition of the corresponding transport coefficients in
a generic theory with the symmetry breaking pattern we are considering. We first extract
the transport coefficient ΛIK as

ΛIK = 1
〈ΩI〉〈ΩK〉

lim
ω→0

lim
δφI

s→0
(−iω GSISK ) , (3.44)

which is a finite quantity, given by the combination of transport coefficients shown in (3.35)
in our specific holographic model. We can then express γiI and λiI as

γiI = −
∑
K

1
〈ΩK〉

lim
ω→0

lim
δφK

s →0
GJiSK

(
Λ−1

)K
I ,

λiI = −
∑
K

1
〈ΩK〉

lim
ω→0

lim
δφK

s →0
GJi

HS
K

(
Λ−1

)K
I . (3.45)

The order of the limits is important, as was also noticed in [24]. We first need take the gap
to zero in order to include the effects of the Goldstone modes in the low frequency regime,
and then take ω → 0.

13In purely spontaneous phases the susceptibilities diverge [45], but here this divergence is regulated by
the perturbative explicit source δφI

s.
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Similarly we can define

γ̃iI =
∑
K

1
〈ΩK〉

lim
ω→0

lim
δφK

s →0

(
Λ−1

)K
I GSKJi ,

λ̃iI =
∑
K

1
〈ΩK〉

lim
ω→0

lim
δφK

s →0

(
Λ−1

)K
I GSKJi

H
, (3.46)

which are the time reversed versions of γiI and λiI and satisfy

γiI

∣∣∣
B

= γ̃iI

∣∣∣
−B

, λiI

∣∣∣
B

= λ̃iI

∣∣∣
−B

, (3.47)

In our specific holographic model, we have explicitly computed γiI , λ
i
I , γ̃

i
I , λ̃

i
I , see (3.19)

and (3.40), or (3.38). They are related by

γiI = ρ

T s
N i

jλ
j
I , γ̃iI = ρ

T s
λ̃jINj

i , (3.48)

since, as explained in section 3.2, only the heat current enters the Josephson relation.
However, more generally, equations (3.45), (3.46) will hold in a generic theory in which
we do not have explicit expressions for the low energy Green’s functions, as long as the
expressions (3.45), (3.46) remain finite as δφIs → 0.

It would be interesting to also define modified electric and heat current operators
J i, J̃ i and J iH , J̃ iH which decouple from the Goldstone modes. This is satisfied as long as
we demand that the Green’s functions GJ iSI , GJ i

HS
I , GSI J̃ i , GSI J̃ i

H
vanish as ω → 0, ωg →

0, irrespective of the order of limits. Within the hydrodynamic regime, (3.45), (3.46)
imply that

J i = J i +
∑
I

γiI
〈ΩI〉

∂tS
I , J iH = J iH +

∑
I

λiI
〈ΩI〉

∂tS
I ,

J̃ i = J i +
∑
I

γ̃iI
〈ΩI〉

∂tS
I , J̃ iH = J iH +

∑
I

λ̃iI
〈ΩI〉

∂tS
I , (3.49)

indeed satisfy

GJ iSI = 0 , GJ i
HS

I = 0 , GSI J̃ i = 0 , GSI J̃ i
H

= 0 . (3.50)

Note that these currents are related by

J i
∣∣∣
B

= J̃ i
∣∣∣
−B

, J iH
∣∣∣
B

= J̃ iH
∣∣∣
−B

, (3.51)

which implies that J i,J iH are not vector operators on backgrounds with B 6= 0, since
they do not have definite transformation properties under time reversal. In other words,
equation (3.50) shows that the Goldstone modes SI do not source J i,J iH , but J̃ i, J̃ iH are
the operators which do not source SI . Note however that the sums J i + J̃ i, J iH + J̃ iH
define good vector operators.
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In a hydrodynamic theory with the constitutive relations (3.18), we can immediately
see that the combinations (3.49) simply remove the contributions of the Goldstone modes
δĉI . It is then straightforward to check that the corresponding Green’s functions satisfy

(iω)−1GJ iJ k = σikH , (iω)−1GJ iJ k
H

= TαikH ,

(iω)−1GJ i
HJ k = T ᾱikH , (iω)−1GJ i

HJ
k
H

= T κ̄ikH . (3.52)

Thus, from a holographic perspective, the combinations (3.49) isolate the horizon contri-
bution to the electric and heat currents. As expected, the finite-frequency poles related to
the pseudo-gapless modes cancel out in the above Green’s functions, which turn out to be
frequency-independent for low frequencies up to ωg.

The Green’s functions for the time-reversed currents J̃ i, J̃ iH are simply the time-
reversed versions of (3.52) and so they also satisfy Onsager relations similar to (3.39).
This can be seen by combining (3.51) and (3.40).

We can proceed further by recalling the relation (3.48) between the transport coeffi-
cients entering in (3.49). We then see that the combinations

J idec ≡ TsJ i − ρN i
kJ kH = TsJ i − ρN i

kJ
k
H ,

J̃ idec ≡ TsJ̃ i − ρ J̃ kHNki = TsJ i − ρ JkHNki , (3.53)

do not include contributions from the Goldstone modes, and can be solely expressed in
terms of the original currents J i, J iH . As before, J idec+J̃ idec is a well-defined vector operator.

For the retarded Green’s function we find

(iω)−1G
Ji

decJ
j
dec

= (Ts)2 σij − Tsρ
(
TN j

kα
ik + TN i

kᾱ
kj
)

+ ρ2N i
kN j

lT κ̄
kl

= (Ts)2 σijH − Tsρ
(
TN j

kα
ik
H + TN i

kᾱ
kj
H

)
+ ρ2N i

kN j
lT κ̄

kl
H

= (Ts)2 σij0 , (3.54)

which turns out to be given by the horizon quantity σij0 defined in (3.20). Similarly

(iω)−1G
J̃i

decJ̃
j
dec

(ω) = (Ts)2 σij0 . (3.55)

We thus observe that the horizon quantity σij0 defined in (3.20) corresponds to the conduc-
tivity of the part of the U(1) current which decouples from the heat current JH and the
Goldstone modes. In the special case of time-reversal invariant backgrounds with B = 0,
we have that N i

k = δik = Nki, and thus J i = J̃ i, J iH = J̃ iH . Then both decoupled combi-
nations (3.53) reduce to the current considered in [46, 47]. Furthermore, in the absense of a
background lattice, the latter can be identified with the incoherent current which decouples
from the conserved momentum operator [48].

Finally, note that all of the above results hold in the strong holographic lattice limit
that we are considering in our paper, where the low frequency transport properties are
determined by the Goldstone modes and the momentum non-conservation poles are outside
our hydrodynamic regime. However, the explicit sources δφIs also relax momentum apart
from the massless modes with a relaxation rate ∼ (δφIs)2. So, had we not included such a
background lattice, the momentum poles would dominate over the Goldstone mode poles
in the hydrodynamic regime.
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3.6 Hydrodynamic modes

In this subsection we wish to extract the dispersion relations of the hydrodynamic modes in
our system at zero pinning. Similarly to the previous section, we switch off all the sources
and we look for solutions of the form

δT̂ = δT0 e
−iωt+iqix

i
, δµ̂ = δµ0 e

−iωt+iqix
i
, δĉI = δcI0 e

−iωt+iqix
i
, (3.56)

which solve the conservation law equations (3.15) and Josephson relation (3.21). Similarly
to the previous subsection, the resulting system of equations reduces a linear system of
equations for the vector of amplitudes

Ŝ(ω, qi, B)

 δT0/T

δµ0
−iω δcL0

 = 0 , (3.57)

where we have defined the matrix

Ŝ(ω, qi, B) =

 T (−ωcµ − iqiqj κ̄ijH) T (−ωξ − iqiqjᾱijH) qi(TνiL − λiL)
T (−ωξ − iqiqjαijH) −ωχq − iqiqjσijH qi

(
βiL − γiL

)
qiT (νiI − ηIj κ̄

ji
H) qi(βiI − ηIjT ᾱ

ji
H) −i(Λ−1)IL + ω−1qiqjw

ij
IL


=
(

(−ωX(B)− iΣ(B))αβ m(B)αL
m′(B)Lα (−iΘ(B) + ω−1 W(B))IL

)
, (3.58)

where we used the notation of (3.35). The indices of the matrices we have defined above take
the values α, β = 1, 2 and I, L = 1, . . . , NZ . The dispersion relations of the hydrodynamic
2+NZ modes ω = ω(qi) are then determined by demanding that det Ŝ = 0. The expressions
for the dispersion relations are going to be rather complicated in general. However, we can
obtain some of their interesting characteristics by closely examining the expression (3.58)
for the matrix Ŝ.

Equations (3.40) also imply the following relations between the various submatrices
in (3.58)

(m(B))T = m′(−B) , (Θ(B))T = Θ(−B) , (Σ(B))T = Σ(−B) ,
(X(B))T = X(−B) = X(B) (W(B))T = W(−B) = W(B). (3.59)

The above show that

Ŝ(ω, qi,−B) = (Ŝ(ω, qi, B))T , (3.60)

which further implies that the dispersion relations are independent of the sign of B, since
the determinant is invariant under transposition. However, the Kernel of Ŝ which solves
equation (3.57) will depend on it and thus the actual modes will change as we change the
sign of B.

By directly exploiting these properties, we show below that the frequencies ω(qi) of
our hydrodynamic modes are pure imaginary. Finally, we notice that the transformation
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qi → λ qi, ω → λ2 ω and δcI → λ−1 δcI is a symmetry of equation (3.57). This shows that
all our modes are diffusion-like with ω(λ qi) = λ2ω(qi).

In contrast, the effective field theory of [24], as well as the holographic model of [26],
both include a real quadratic part in the dispersion relation for the magnetophonon mode
in the purely spontaneous or pseudo-spontaneous symmetry breaking regime. In our case,
the modes are purely diffusive as a result of being in the strong translational symmetry
breaking regime.

Let us now prove that the modes are pure imaginary. We find convenient to split the
mode vector which solves (3.57) according to

|v1〉 =
(
δT0/T

δµ0

)
, |v2〉 = −iω(qi)


...
δcL0
...

 . (3.61)

Then for the background with B → −B there is a different mode with |ṽ1〉 and |ṽ2〉 but
with the same dispersion relation ω(qi). This can be justified by using the transformation
property (3.60) and the comment below it.

We can write

− (ωX(B) + iΣ(B)) |v1〉+ m(B) |v2〉 = 0

m′(B) |v1〉+
(
−iΘ(B) + ω−1 W(B)

)
|v2〉 = 0 , (3.62)

while for the time reversed configuration with B → −B we have

− (ωX(−B) + iΣ(−B)) |ṽ1〉+ m(−B) |ṽ2〉 = 0

m′(−B) |ṽ1〉+
(
−iΘ(−B) + ω−1 W(−B)

)
|ṽ2〉 = 0 . (3.63)

From the above systems and after using (3.59) we obtain the relation

iω =
ωω̄

(
〈ṽ1|X |v1〉+ 〈v1|XT |ṽ1〉

)
+ 〈ṽ2|W |v2〉+ 〈v2|WT |ṽ2〉

〈ṽ1|Σ |v1〉+ 〈v1|ΣT |ṽ1〉+ 〈ṽ2|Θ |v2〉+ 〈v2|ΘT |ṽ2〉
, (3.64)

showing that iω has to be a real number.
For B = 0, the matrices X, W, Σ and Θ are symmetric. We also know that the

vectors |v1〉 and |v2〉 coincide with the vectors |ṽ1〉 and |ṽ2〉. This observation shows that if
the matrices X and W are positive definite, then iω > 0. In other words, at zero magnetic
field, thermodynamic stability implies dynamical stability in the hydrodynamic sector that
we focussed on.

4 Numerical checks

In this section we numerical confirm the results presented in section 3, and in partic-
ular the formula for the dispersion relations of the hydrodynamic modes coming from
equation (3.58), the gap (3.30) and the optical conductivities (3.38). This is achieved by
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focusing on the model of [44], which is a truncation of the general bulk action (2.1) down
to the four-dimensional Einstein-Maxwell theory coupled to six real scalars, φ, ψ, χi and
σi with i = 1, 2

S =
∫
d4x
√
−g

(
R− V (φ)− 3

2 (∂φ)2 − 1
2 (∂ψ)2 − 1

2θ(φ)
[
(∂χ1)2 + (∂χ2)2

]
− 1

2θ1(ψ)
[
(∂σ1)2 + (∂σ2)2

]
− τ(φ, ψ)

4 F 2
)
, (4.1)

where

V (φ, ψ) = −6 coshφ , θ(φ) = 12 sinh2(δ φ) ,
τ(φ, ψ) = cosh(γ φ) , θ1(ψ) = ψ2 . (4.2)

The variation of the above action gives rise to the following field equations of motion

Rµν −
τ

2

(
FµρFν

ρ − 1
4gµνF

2
)
− 1

2gµνV −
3
2∂µφ∂νφ−

1
2∂µψ∂νψ

−
∑
i

(
θ

2∂µχi∂νχi + θ1
2 ∂µσi∂νσi

)
= 0 ,

3√
−g

∂µ
(√
−g ∂µφ

)
− ∂φV −

1
4∂φτ F

2 − 1
2θ
′ ∑

i

(∂χi)2 = 0 ,

1√
−g

∂µ
(√
−g ∂µψ

)
− ∂ψV −

1
4∂ψτ F

2 − 1
2θ
′
1
∑
i

(∂σi)2 = 0 ,

1√
−g

∂µ
(
θ1
√
−g ∂µσi

)
= 0 , 1√

−g
∂µ
(
θ
√
−g ∂µχi

)
= 0 ,

∂µ(
√
−g τFµν) = 0 . (4.3)

The simplest solution to the above equations is the unit radius vacuum AdS4, which is
dual to a d = 3 CFT with a conserved U(1) charge. In this work we choose to place the
CFT at finite temperature and deform it by a chemical potential, an external magnetic
field and a background lattice. Within this theory, we are interested in thermal states that
correspond to density waves. Putting all the ingredients together, the solutions we are
after are captured by the ansatz (2.14), which we rewrite here for convenience

ds2 = −U(r) dt2 + 1
U(r) dr

2 + e2V1(r) dx1dx1 + e2V2(r) dx2dx2 ,

A = a(r) dt +B x1dx2,

φ = φ(r) , χI = kIi x
i ,

ψ = ψ(r) , σI = kIsix
i , (4.4)

where I = 1, 2, i = 1, 2. For simplicity we choose kIi = kiδ
Ii, kIsi = ksiδ

Ii.
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Figure 1. Plot of the critical temperature at which the background Q-lattice becomes unstable as
a function of k for (ks1, ks2, ψs, γ, δ, µ,B) =

( 3
10 ,

3
10 , 4, 3, 1, 1,

1
10
)
. We see that the most unstable

mode corresponds to k = 0.

Let us now move on to discuss the boundary conditions. In the IR, we demand the
presence of a regular Killing horizon at r = 0 by imposing the following expansion

U (r) = 4π T r + . . . , Vi = V
(0)
i + . . . , a = a(0) r + . . . ,

φ = φ(0)(x) + . . . , ψ = ψ(0)(x) + . . . , (4.5)

which is specified in terms of 6 constants. In the UV, we demand the conformal boundary
expansion

U → (r +R)2 + · · ·+W (r +R)−1 + . . . , V1 → log(r +R) + · · ·+Wp(r +R)−3 + . . . ,

V2 → log(r +R) + . . . a→ µ+Q (r +R)−1 + . . . ,

φ→ φs (r +R)−1 + φv (r +R)−2 + . . . , ψ → ψs + · · ·+ ψv (r +R)−3 + . . . . (4.6)

Just like in [44], the scalar fields (ψ, σ) are taken to constitute the anisotropic Q-lattice in
which both translational invariance and the two U(1)ψ symmetries are explicitly broken,
while the density wave phase is supported by (φ, χ) and breaks the two U(1)φ symmetries
spontaneously. As such, the thermal states of interest correspond to taking ψs 6= 0 and
φs = 0. Thus, this expansion is parametrised by 8 constants. Overall we have 14 constants
appearing in the expansions, in comparison to the 11 integration constants of the problem.
Thus, for fixed γ, δ,B, ki, ksi and temperatures below a critical one T < Tc, we expect to
find a 3 parameter family of solutions, labelled by ψs, µ, T .

In figure 1 we plot the critical temperature, Tc, as a function of k = k1 = k2 for a
particular choice of parameters. This is obtained by considering linearised fluctuations
around the normal phase of the system (φ = 0, χ = 0) and exhibits the usual “Bell Curve”
shape.

4.1 Quasinormal modes

We now move on to compute quasinormal modes for the backgrounds constructed above.
For simplicity, we focus only on isotropic backgrounds characterised by k1 = k2 ≡ k, ks1 =
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ks2 ≡ ks, V1 = V2. We consider perturbations of the form

δds2 = −Uδhttdt2 + 2Uδht xidtdxi + e2V1
(
h11dx

2
1 + h22dx

2
2 + 2h12dx1dx2

)
, (4.7)

together with (δat, δa1, δa2, δφ, δψ, δχ1, δχ2, δσ1, δσ2), where the variations are taken to
have the form

δf(t, r, x1) = e−iωv(t,r)+iqx1δf(r) , (4.8)

with vEF the Eddington-Finkelstein coordinate defined as

vEF(t, r, x1) = t+
∫ r

∞

dy

U(y) . (4.9)

Compared to the analytic setup of the problem in section 3, we have chosen S in (2.29) such
that S′ = U−1, as well as a radial gauge in which all perturbations with an r index vanish.
Such a gauge is not compatible with the way we constructed the modes in section 3, but
the physical information of the quasinormal modes in the end should of course be the same.
Note also that our choice for the momentum qi to point in the direction x1 is without loss
of generality, because the background is isotropic. Plugging this ansatz in the equations
of motion, we obtain 5 first order ODEs and 10 second order giving rise to 25 integration
constants.

Let us now discuss the boundary conditions that we need to impose on these fields.
In the IR, we impose infalling boundary conditions at the horizon, which without loss of
generality is set at r = 0

δhtt = c1 r + . . . ,

δht x1 = c2 + . . . , δht x2 = c3 + . . . ,

δhx1x1 = c4 + . . . , δhx2x2 = −c4 + . . . ,

δhx1 x2 = c5 + . . . , δat = c6 r + . . . ,

δax1 = c7 + . . . , δax2 = c8 + . . . ,

δφ = c9 + . . . , δψ = c10 + . . . ,

δχ1 = c11 + . . . , δσ1 = c12 + . . . ,

δχ2 = c13 + . . . , δσ2 = c14 + . . . , (4.10)

where the constants c1, c2, c3 and c6 are not free but are fixed in terms of the others. Thus,
for fixed value of q, the expansion is fixed in terms of 11 constants, ω, c4, c5, c7, c8, c9, c10,
c11, c12, c13, c14.

On the other hand, in the UV, the most general expansion with φs = 0 is given by

δhtt = δh
(s)
tt + . . . ,

δhtx1 = δh
(s)
t x1 + . . . , δhtx2 = δh

(s)
t x2 + . . . , ,

δhx1x1 = δh(s)
x1 x1 + . . . , δhx2x2 = δh(s)

x2 x2 + · · ·+ δh
(v)
x2 x2

(r +R)3 + . . . ,
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δhx1 x2 = δh(s)
x1 x2 + · · ·+

δh
(v)
x1 x2

(r +R)3 + . . . , δat = a
(s)
t + . . . ,

δax1 = a(s)
x1 + a

(v)
x1

(r +R) + . . . , δax2 = a(s)
x2 + a

(v)
x2

(r +R) + . . . ,

δφ = δφ(s)

(r +R) + δφ(v)

(r +R)2 + . . . , δψ = δψ(s) + · · ·+ δψ(v)

(r +R)3 + . . . ,

δχ1 = δχ
(v)
1 + . . . , δσ1 = δσ

(s)
1 + · · ·+ δσ

(v)
1

(r +R)3 + . . . ,

δχ2 = δχ
(v)
2 + . . . , δσ2 = δσ

(s)
2 + · · ·+ δσ

(v)
2

(r +R)3 + . . . . (4.11)

For the computation of quasinormal modes, we need to ensure that we remove all the
sources from the UV expansion up to a combination of coordinate reparametrisations and
gauge transformations

[δgµν + Lζ̃gµν ]→ 0 ,

[δA+ Lζ̃A+ dΛ]→ 0 , (4.12)

where the gauge transformations are of the form

xµ → xµ + ζ̃µ , ζ̃ = e−iωt+iqx1 ζµ ∂µ ,

Aµ → Aµ + ∂µΛ , Λ = e−iωt+iqx1 (λ+ λ2x2) , (4.13)

for ζµ, λ constants. This requirement demands that the sources appearing in (4.11) take
the form

δh
(s)
tt = 2iω ζ1 − 2ζ2 ,

δh
(s)
tx1 = iq ζ1 + iω ζ3 , δh

(s)
tx2 = iω ζ4 ,

δh(s)
x1 x1 = −2ζ2 − 2iq ζ3 , δh(s)

x2 x2 = −2ζ2 ,

δh(s)
x1 x2 = −iqζ4 , δa

(s)
t = iµ ω ζ1 + iωλ ,

δa(s)
x1 = −iµ q ζ1 − iq λ+B ζ4 , δa(s)

x2 = −B ζ3 ,

δφ(s) = 0 , δψ(s) = 0 ,

δσ
(s)
1 = −ks ζ3 , δσ

(s)
2 = −ks ζ4 , (4.14)

where λ2 = Bζ3. Therefore, the UV expansion is fixed in terms of 15 constants: ζ1, ζ2, ζ3,
ζ4, λ and δh(v)

x2 x2 , δh
(v)
x1 x2 , a

(v)
x1 , a

(v)
x2 , δφ(v), δψ(v), δσ(v)

1 , δσ(v)
2 , δχ(v)

1 , δχ(v)
2 .

Overall, for fixed q,B, we have 26 undetermined constants, of which one can be set to
unity because of the linearity of the equations. This matches precisely the 25 integration
constants of the problem and thus we expect our solutions to be labelled by q and B. We
proceed to solve numerically this system of equations subject to the above boundary condi-
tions using a double-sided shooting method. Figure 2 (left) shows the dispersion relations
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Figure 2. In the left panel we show the dispersion relations for the four diffusive modes in our
system. The dashed lines represent the dispersion relations obtained from the linear system in (3.57).
In the right panel we plot iω(q)′′/2 as a function of q for each one of the four diffusive modes that
we have found numerically. In the limit of small momenta the value of this function converges to
the diffusion constants we find from equation (3.57), shown here with dashed lines. In this figure
we used (φs, ψs, T, µ, k, ks, γ, δ, B) =

(
0, 4, 1

100 , 1,
3

20 ,
3

10 , 3,
1
2 ,

1
100
)
.

for the four hydrodynamic quasinormal modes in our system for a particular choice of the
background configuration. We also illustrate with dashed lines the dispersion relations14

fixed by the linear system (3.57). Figure 2 (right) shows the analytically predicted diffu-
sion constants from (3.57), and the ones computed numerically from the q → 0 limit of the
function iω(q)′′/2.15

Let us now make some remarks on figure 2. First of all, we note that all the modes we
find are diffusive and purely imaginary, as expected from the analysis in section 3.6. We
also see a good quantitative agreement of the numerical solution and the analytical expres-
sions in the regime of validity of hydrodynamics, where q is parametrically smaller than
all the dimensionful scales in the system. Actually, we expect the radius of convergence
of hydrodynamics to be set by the collision points of the hydrodynamic modes with the
first non-hydrodynamic mode [49–51]. In figure 2 we chose the parameters such that the
lattice is weak; in this case, the lowest lying non-hydrodynamic mode is the momentum
relaxation/cyclotron mode. One of the thermoelectric modes, the steepest curve in fig-
ure 2, interacts with this non-hydrodynamic mode as q is increased, leading to the quickest
deviation from the analytic quadratic dispersion relations. The top curve describes the
incoherent thermoelectric mode which decouples from momentum, and agrees very well
with the analytic expression even for very large q.16 This is similar to the case without
magnetic field, see [17] for further details.

14Note that, in order to evaluate the quasinormal modes using the analytic formula (3.58), we need to
compute the derivatives wi

I and wij
IJ . In order to compute these correctly one needs to consider backgrounds

with general kI
i , i.e. k1

1 6= k1
2 6= k2

1 6= k2
2.

15Note that, as explained below (4.9), we have chosen the momentum q to point in x1, and thus, in this
setting, the diffusion matrices Dij become diffusion constants D for each mode.

16The above characterization of the modes as thermoelectric versus Goldstone is done by examining the
system as k → 0; in general all the modes are coupled.
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4.2 Pseudo-gapless modes and two-point fucntions

In this subsection we outline the numerical computation of the pseudo-gapless modes as
well as certain two-point functions involving the currents J,Q in the presence of pin-
ning, φs 6= 0. We perform a calculation similar to the one for quasinormal modes, but
we now consider fluctuations with q = 0 around a background configuration that has
a small but finite source φs 6= 0. Looking at the ansatz (4.7), it is consistent to set
δhtt, δhx1 x1 , δhx1 x2 , δhx2 x2 , δat, δφ, δψ = 0. We are thus left we 6 second order and 2 first
order equations for the remaining fluctuations, giving rise to 14 integration constants.

The IR expansion close to the horizon (r = 0) takes a similar form as above, namely

δht x1 = c2 + . . . , δht x2 = c3 + . . . ,

δax1 = c7 + . . . , δax2 = c8 + . . . ,

δχ1 = c11 + . . . , δσ1 = c12 + . . . ,

δχ2 = c13 + . . . , δσ2 = c14 + . . . , (4.15)

where the constants c2, c3 are fixed in terms of the others. We see that the expansion is
fixed in terms of 7 constants, ω, c7, c8, c11, c12, c13, c14.

On the other hand, the UV expansion changes slightly in comparison to (4.11) because
φs 6= 0. In particular, it is given by

δhtx1 = δh
(s)
t x1 + . . . , δhtx2 = δh

(s)
t x2 + . . . ,

δax1 = a(s)
x1 + a

(v)
x1

(r +R) + . . . , δax2 = a(s)
x2 + a

(v)
x2

(r +R) + . . . ,

δχ1 = δχ
(s)
1 + δχ

(v)
1

(r +R) + . . . , δσ1 = δσ
(s)
1 + · · ·+ δσ

(v)
1

(r +R)3 + . . . ,

δχ2 = δχ
(s)
2 + δχ

(v)
2

(r +R) + . . . , δσ2 = δσ
(s)
2 + · · ·+ δσ

(v)
2

(r +R)3 + . . . . (4.16)

Once again, we remove all the sources from the UV expansion apart from an external
electric field E and a temperature gradient ζ in the x1 direction, up to a combination of
coordinate reparametrisations and gauge transformations. This is done by imposing the
following constraints on the sources in (4.16)

δh
(s)
tx1 = iω ζ3 + ζ

i ω
, δh

(s)
tx2 = iω ζ4 , δa(s)

x1 = B ζ4 + (E − µ ζ)
i ω

, δa(s)
x2 = −B ζ3 ,

δσ
(s)
1 = −ks ζ3 , δσ

(s)
2 = −ks ζ4 , δχ

(s)
1 = −k ζ3 , δχ

(s)
2 = −k ζ4 . (4.17)

Let us first consider the case of the pseudo-gapless modes by setting (E, ζ) = (0, 0).
We see that the UV expansion is fixed in terms of 8 constants: ζ3, ζ4, a(v)

x1 , a
(v)
x2 , δσ

(v)
1 ,

δχ
(v)
1 , δσ(v)

2 , δχ(v)
2 . Overall, we have 15 undetermined constants, one of which can be set to

unity because of the linearity of the equations. This matches precisely the 14 integration
constants of the problem and thus we expect to find a discrete set of solutions, labelled by
B. We proceed to solve numerically this system of equations subject to the above boundary
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Figure 3. In the top row we plot the real and imaginary part of the gap, ωg, as functions of the
magnetic field B for φs = 10−4. In the bottom row we plot the real and imaginary part of ω+

g as
functions of the magnetic field φs for B = 1/200. The dashed lines represent the analytic formula
of the previous section, which is exact in B and perturbative in φs. Here (ψs, T, µ, k, ks, γ, δ) =(
4, 1

100 , 1,
3

20 ,
3

10 , 3,
1
2
)
.

conditions using a double-sided shooting method aiming to identify the two pseudo-gapless
modes of equations (3.30). Note that the two modes have equal imaginary parts and
opposite real parts. In figure 3 we plot the real and imaginary part of these modes as a
function of the pinning parameter, φs, and the external magnetic field, B, and we compare
with the analytic formulas which are depicted with dashed lines. We see that the numerical
and analytic calculations are in good agreement. The reader is reminded that the analytic
computation is perturbative in φs, but exact in B.

We finally consider the computation of the conductivities. From (4.17) we see that,
for fixed (E, ζ), we have 7 constants in the IR and 8 in the UV. Comparing with the 14
integration constants in the problem, we expect to find a 1-parameter family of solutions
labelled by ω. Using the linearity of the equations we set (E, ζ) = (1, 0) or (E, ζ) = (0, 1)
depending on which source we want to keep. The diffusion currents are then given by

δĴx1 = E −
(
µ+ iQ

ω

)
ζ + a

(v)
1 + iBωζ4 ,

δĴx2 = a
(v)
2 − iBωζ3 −M12 ζ ,

δQ̂x1 = −µa(v)
1 + 3iksψ

2
s

ω
δσ

(v)
1 + 12iδ2kφ

2
s

ω
δχ

(v)
1 − E

(
µ+ iQ

ω

)
− i ζ

ω

(
3W + 3SV φs + 3

2 ik
2
sψ

2
sω − 2µQ+ iµ2ω

)
+ ζ3

4
(
48k2δ2φ2

s + 3k2
sφ

2
sψ

2
s + 2k4

sψ
4
s − 2k2

sψ
2
sω

2 + 4B2
)

+ iB

ω
a

(v)
2 − iBωµζ4 ,
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δQ̂x2 = −µa(v)
2 + 3iksψ

2
s

ω
δσ

(v)
2 + 12iδ2kφ

2
s

ω
δχ

(v)
2 −

iB

ω
E + i ζ

ω
B

(
µ+ iQ

ω

)
+ ζ4

4
(
48k2δ2φ2

s + 3k2
sφ

2
sψ

2
s + 2k4

sψ
4
s − 2k2

sψ
2
sω

2 + 4B2
)
− iB

ω
a

(v)
1 + iBωµζ3

−M12E − 2M12
T ζ . (4.18)

Carrying out the numerical shooting computation, we calculate the (1, 1) and
(1, 2) components of the two-point functions (iω)−1GJiJj , (iω)−1GJiQj , (iω)−1GQjJi ,
(iω)−1GQiQj . For fixed B and φs, these quantities are plotted in figure 4 with solid
lines. In order to compare our numerics with the analytic results of section 3, we use
the definition (3.16) to write

(iω)−1GJiJj = σij ,

(iω)−1GJiQj = Tαij −
∑
I

wjI
〈ΩI〉

GJiSI ,

(iω)−1GQjJi = T ᾱij +
∑
I

wiI
〈ΩI〉

GSIJj ,

(iω)−1GQiQj = T κ̄ij −
∑
I

wjI
〈ΩI〉

GJi
HS

I +
∑
I

wiI
〈ΩI〉

(
G
SIJj

H
− iω

∑
K

wiK
〈ΩK〉

GSISK

)
, (4.19)

and thus obtain analytic expressions using (3.38), which are depicted in figure 4 with
dashed lines. We see that the two are in good quantitative agreement at small frequencies.
The reader is reminded that in this calculation we have set ζIS = 0 and we only included
sources in the x1 direction; thus we can not compute the (2, 1) and (2, 2) components of
the two-point functions.

5 Discussion

In this paper we constructed the effective theory of hydrodynamics which captures holo-
graphic phases in which translations are broken explicitly and spontaneously. We have
significantly extended the construction of [17] to include an arbitrary number NZ of gap-
less degrees of freedom emerging from spontaneous density waves and we also included a
background magnetic field.

A holographic model which incorporates the two Goldstone modes arising from spon-
taneous breaking of translations in magnetic fields, along with the coupling to the heat
current was studied in [26] and a complex quadratic dispersion relation was found. In our
setup, the strength of the explicit breaking is large compared to the wavelength of the
hydrodynamic fluctuations. In section 3.6 we analytically derived an equation whose roots
yield the dispersion relations of the hydrodynamic modes governing our system. Despite
not being able to write down the dispersion relations of all of our 2 + NZ hydrodynamic
modes in closed form, we prove that they are purely imaginary and diffusive, unlike [26].

In our construction we have also included the corresponding NZ perturbative deforma-
tion parameters which pin down the density waves and introduce NZ gaps in our theory.

– 34 –



J
H
E
P
0
5
(
2
0
2
1
)
2
7
0

0.0 0.2 0.4 0.6 0.8 1.0

76

78

80

82

84

86

88

90

103 ω

σ
11

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

0.30

0.35

0.40

103ω

(iω
)
G
Q
1
J1

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

0.30

0.35

0.40

103ω

(iω
)G

J1
Q
1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

103ω

(iω
)G

Q
1
Q
1

0.0 0.2 0.4 0.6 0.8 1.0

-36

-34

-32

-30

-28

-26

103 ω

σ
12

0.0 0.2 0.4 0.6 0.8 1.0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

103ω

(iω
)G

Q
1
J2

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

103ω

(iω
)G

J1
Q
2

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

103ω

(iω
)G

Q
1
Q
2

Figure 4. Plots of the components (1, 1) and (1, 2) of the thermoelectric conductivities as
functions of the frequency. The dashed lines correspond to the analytic formulas (3.38). Here
(φs, ψs, T, µ, k, ks, γ, δ, B) =

(
10−4, 4, 1

100 , 1,
3

20 ,
3

10 , 3,
1
2 ,

1
100
)
.

Interestingly, we have shown that apart from the gap, the magnetic field causes the corre-
sponding poles to move off the imaginary axis due to resonance effects. In section 3.4 we
computed the retarded Green’s functions of the operators relevant to the hydrodynamic
description of the system. As one might expect, the poles due to pinning have a direct
effect on the transport properties of our system as can be seen from the explicit form of
the Green’s functions in equation (3.38).
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Finally, an important byproduct in our work is the identification of the correct current
in (3.16) which describes the transfer of entropy as can be seen by the conservation equa-
tion in the last line of (3.15). Given this definition, the variation of the free energy wiI with
respect to the wavenumbers kIi drops out of the corresponding Green’s functions (3.38).
Moreover, the gaps and the resonance frequencies which can be found by solving the eigen-
value problem equation (3.24) are also independent of wiI .

There are various open questions which one could further explore. It would be inter-
esting to consider second order hydrodynamic perturbation theory and examine what the
second law implies for the transport coefficients in phases with spontaneous and explicit
symmetry breaking. Additionally, it is important to examine how transport in such phases
is constrained from purely field theoric considerations, such as the Ward identities, and also
investigate the possible experimental significance of the decoupled/incoherent currents we
defined in this paper. Finally, it would be enlightning to move away from homogeneity and
explore what kind of novel effects inhomogeneous models with similar symmetry breaking
patterns might exhibit.
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A Perturbations in the bulk

In this appendix we derive the constitutive relations (3.18) for the transport part of the heat
and electric currents along with the Josephson relations (3.21) for the density wave degrees
of freedom. In order to do this, we solve for the perturbation δχI through its equation
of motion (2.17). We only need to do this up to second order in our ε expansion (3.1),
which we carry out in appendix A.1. Then, in appendix A.2 we derive the constitutive
relations for the currents by relating the field theory and horizon currents densities of our
holographic model.

A.1 Perturbations for χI

After perturbatively expanding the equation of motion (2.17), we have

−∂t
(√
−gΦIg

ttgijkIi δgtj
)
− ∂r

(√
−gΦIg

rrgijkIi δgrj
)

+∂j
(
δ
(√
−gΦIg

ij
)
kIi

)
+ ∂µ

(√
−gΦIg

µν∂νδχ
I
)

= 0 . (A.1)
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From the form of the solution close to the conformal boundary at r → ∞, we can infer
a relation between the sources ζSI

of the operators SI and their vevs δ〈SI〉. This will
essentially give a Josephson type of equation for the variable δĉI through equation (3.13).
In the next subsections we will solve equation (A.1) in an ε expansion.

A.1.1 Field theory interpretation at order O(ε)

At order O(ε) we obtain the equation

−√gΦIk
I
i g
ijζj[1] − ∂r

(√
gΦIUg

ijkIi δgrj[1]
)

+ iqj δ
(√

gΦIg
ij
)

[0]
kIi

+∂r
(√

gΦIU∂rδχ
I
[1]

)
− iω[1]∂r

(√
gΦIU∂rS δc

I
[0]

)
= 0 . (A.2)

We integrate this equation for δχI[1] while insisting on the near horizon behaviour (2.30).
After doing so, we obtain the asymptotic behavior

δχI[1] = r2∆I−3

(2∆I − 3)φIv2

[
wjIζj[1] +√g(0)Φ

(0)
I

(
gij(0)k

I
i vj[1] − iω[1] δc

I
[0]

)
(A.3)

+ iqi
(
νiIδT[0] + βiIδµ[0]

)]
+ · · · . (A.4)

Demanding that the operator SI is not sourced at this order, we must have
√
g(0)Φ

(0)
I

(
iω[1] δc

I
[0] − g

ij
(0)k

I
i vj[1]

)
= wjIζj[1] + iqi

(
νiIδT[0] + βiIδµ[0]

)
. (A.5)

A.1.2 Field theory interpretation at order O(ε2)

At order O(ε2) we obtain the equation

−√gΦIk
I
i g
ijζj[2] − ∂r

(√
gΦIUg

ijkIi δgrj[2]
)

+ iqj δ
(√

gΦIg
ij
)

[1]
kIi

−qiqj
√
gΦIg

ij δcI[0] + ∂r
(√

gΦIU∂rδχ
I
[2]

)
− iω[2]∂r

(√
gΦIU∂rS δc

I
[0]

)
= 0 , (A.6)

where we have used that δT[0] = δµ[0] = ω[1] = 0 shown in subsection A.3 below. Following
similar steps as above, we obtain the asymptotic expansion

δχI[2] = r2∆I−3

(2∆I − 3)φIv2

[
wjIζj[2] +√g(0)Φ

(0)
I

(
gij(0)k

I
i vj[2] − iω[2] δc

I
[0]

)

+ iqi

(
νiIδT[1] + βiIδµ[1] − i

∑
J

wijIJδc
J
[0]qj

)]
+ · · · . (A.7)

This result, along with equation (3.13), allows us to write the Josephson relation (3.21).

A.2 Constitutive relations for the thermoelectric currents

In this subsection we will relate the horizon current densities (2.32) to the boundary quan-
tities δJ i and δQi that appear in the current conservation equation (3.12).

The bulk electric current is defined as

δJ ibulk =
√
−g τ δF ir . (A.8)
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The equations of motion (2.2) imply

∂rδJ
i
bulk = ∂t

(√
−g τ δF ti

)
+ ∂jδ

(√
−g τ F ji

)
. (A.9)

Following [52], for any vector Λµ in the bulk we can define the bulk two-form

Gµν = −2∇[µΛν] − τ Λ[µF ν]ρAρ −
1
2 (ΛρAρ − f) τFµν , (A.10)

where ΛµFµν = ∂νf + βν , with β a 1-form and f a globally defined function. After using
the equations of motion (2.2), its divergence can be brought to the form

∇µGµν = V Λν + 2∇ν∇ρΛρ − 2∇µ∇(µΛν) + 1
2τF

νρβρ −
1
2AρLΛ (τ F νρ)

− τ

2 F
νρAρ∇µΛµ +

(∑
I

GI ∂
νφI∂ρφ

I +
∑
J

WJ ∂
νψJ∂ρψ

J

)
Λρ

+
(∑

I

ΦI ∂
νχI∂ρχ

I +
∑
J

ΨJ ∂
νσJ∂ρσ

J

)
Λρ . (A.11)

We now consider Λµ = ∂t, and a general perturbation around the background
ansatz (2.14) (not necessarily of the form (2.28)). The bulk heat current is defined as

δQibulk =
√
−g Gir = U2√g gij

(
∂r

(
δgjt
U

)
− ∂j

(
δgrt
U

))
− at δJ ibulk

= U1/2√g
[
2Ki

t + U1/2gij ∂tδgrj
]
− at δJ ibulk , (A.12)

where we have used the result of appendix B of [36] for the extrinsic curvature component

Ki
t = 1

2U
3/2gij

[
∂r

(
δgjt
U

)
− ∂j

(
δgrt
U

)
− ∂tδgrj

U

]
. (A.13)

Writing t̃µν = −2Kµ
ν + Xδµν + Y µ

ν , where X = 2K + · · · and Y are additonal terms
that come from the counterterms, we recognize t̃µν as the field theory stress tensor, when
evaluated on the boundary. Evaluating (A.12) at the boundary, this gives

δQibulk

∣∣∣
∞

= −
(
r−2 tit + µ δJ ibulk

∣∣∣
∞

)
, (A.14)

where tµν = r5t̃µν . Note that the contribution from Y i
t, as coming from (2.20), and

contribution from the term involving a time derivative are subleading even in the precense
of sources. This result matches the expression for the boundary heat current obtained from
the variation of the action in the presence of the sources as in (2.28)

δS =
∫
d3x
√
−h

[1
2 r
−5 tµν δgµν + r−3JµδAµ

]
, (A.15)
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where hµν = gµν − nµ nν and n is the unit norm normal vector. Furthermore, equa-
tion (A.11) implies the radial dependence

∂rδQ
i
bulk = ∂j

(√
−gGji

)
+ ∂t

(√
−gGti

)
− 2
√
−g ∂i∂t log

√
−g + 2

√
−ggiρ∇µ∂tgµρ

−
√
−g τF iρ∂tAρ + 1

2∂t
(√
−g Aρτ F iρ

)
−
√
−g

(∑
I

GI ∂
iφI∂tφ

I +
∑
J

WJ ∂
iψJ∂tψ

J

)

−
√
−g

(∑
I

ΦI ∂
iχI∂tχ

I +
∑
J

ΨJ ∂
iσJ∂tσ

J

)
. (A.16)

A.2.1 The boundary currents at order O(ε)

Expanding the radial evolution for the electric current (A.9) to order O(ε) we obtain

∂rδJ
i
bulk[1] = −τ√gglkgijεkj B ζl[1] + iqj δ

(
τ
√
ggjkgil

)
[0]
εklB , (A.17)

which can integrate from the horizon up to the conformal boundary at infinity to find

δJ i∞[1] = δJ i(0)[1] −M
ij ζj[1] + iqj

(
∂TM

ij δT[0] + ∂µM
ijδµ[0]

)
= √g(0)τ

(0)gij(0)

(
−iqjδµ[0] + Ej[1] + vj[1]a

(0)
t +Bεjlg

lk
(0)vk[1]

)
−M ij ζj[1]

+ iqj
(
∂TM

ij δT[0] + ∂µM
ijδµ[0]

)
. (A.18)

For the radial evolution of the heat current, after expanding equation (A.16) we obtain

∂rδQ
i
bulk[1] = √gτεij B (Ej[1] − 2at ζj[1])− iqj δ

(√
−g τatF ji

)
[0]

+ iω[1]
√
g gij

∑
I

ΦIk
I
j δc

I
[0] . (A.19)

Integrating from the horizon to infinity we obtain

δQi∞[1] = δQi(0)[1] + iω[1]
∑
I

wiI δc
I
[0] −M

ij Ej[1] − 2M ij
T ζj[1]

+ iqj
(
∂TM

ij
T δT[0] + ∂µM

ij
T δµ[0]

)
= 4πT√g(0)g

ij
(0) vj[1] + iω[1]

∑
I

wiI δc
I
[0]

−M ij Ej[1] − 2M ij
T ζj[1] + iqj

(
∂TM

ij
T δT[0] + ∂µM

ij
T δµ[0]

)
. (A.20)

A.2.2 The boundary currents at order O(ε2)

Using the fact that δT[0] = δµ[0] = ω[1] = 0 (shown in subsection A.3 below), we proceed
to compute the currents at next order in O(ε).

The radial evolution equation (A.9) for the electric current gives

∂rδJ
i
bulk[2] = −τ√gglkgijεkj B ζl[2] + iqj δ

(
τ
√
−ggjkgil

)
[1]
εklB , (A.21)
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which can be integrated to give the expression

δJ i∞[2] = δJ i(0)[2] −M
ij ζj[2] + iqj

(
∂TM

ij δT[1] + ∂µM
ijδµ[1] + iql

∑
I

∂kI
l
M ijδcI[0]

)
= √g(0)τ

(0)gij(0)

(
−iqjδµ[1] + Ej[2] + vj[2]a

(0)
t +Bεjlg

lk
(0)vk[2]

)
−M ij ζj[2]

+ iqj

(
∂TM

ij δT[1] + ∂µM
ijδµ[1] + iql

∑
I

∂kI
l
M ijδcI[0]

)
. (A.22)

For the heat current we have

∂rδQ
i
bulk[2] = √gτεij B (Ej[2] − 2at ζj[2])− iqj δ

(√
−g τatF ji

)
[1]

+ iω[2]
√
g gij

∑
I

ΦIk
I
j δc

I
[0] . (A.23)

Integrating from the horizon to infinity we obtain

δQi∞[2] = δQi(0)[2] + iω[2]
∑
I

wiI δc
I
[0] −M

ij Ej[2] − 2M ij
T ζj[2]

+ iqj

(
∂TM

ij
T δT[1] + ∂µM

ij
T δµ[1] + iql

∑
I

∂kI
l
M ij
T δc

I
(0)

)
= Ts vi[2] + iω[2]

∑
I

wiI δc
I
[0] −M

ij Ej[2] − 2M ij
T ζj[2]

+ iqj

(
∂TM

ij
T δT[1] + ∂µM

ij
T δµ[1] + iql

∑
I

∂kI
l
M ij
T δc

I
(0)

)
. (A.24)

A.3 Horizon vector constraint

In this subsection, following [17], we use the vector constraint (2.33c) in order to show that
δT[0] = δµ[0] = ω[1] = 0, as well as solve for the horizon fluid velocity vi[2] in terms of the
zero modes and the sources. At O(ε), the vector constraint (2.33c) gives

Bij vj[1] + iqi
√
g(0)

(
ρ δµ[0] + s δT[0]

)
+ iqk Bεijg

jk
(0)τ

(0)δµ[0] − iω[1]
∑
I

Φ(0)
I kIi δc

I
[0] = 0 ,

(A.25)

where we have defined

Bij =
∑
J

Ψ(0)
J kJsik

J
sj +

∑
I

Φ(0)
I kIi k

I
j + τ (0)B2 εikεjlg

kl
(0) −

4πρ
s
Bεij . (A.26)

We now note that the boundary currents δJ i∞ and δQi∞ are of order O(ε), and so the Ward
identities (3.15) give17

iω[1]

(
T−1cµ ξ

ξ χq

)(
δT[0]
δµ[0]

)
= 0 . (A.27)

17As explained in [17], we can alternatively get this system by considering the horizon scalar con-
straints (2.33a)–(2.33b) at order O(ε2).
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We now consider the two possibilities for ω[1]:

ω[1] 6= 0: provided the matrix of susceptibilities in (A.27) is invertible, as is generically
the case, we deduce from (A.27) that δT[0] = δµ[0] = 0. However, we can then
combine (A.5) and (A.25), leading to

√
g(0)

(∑
J

Ψ(0)
J kJsik

J
sj + τ (0)B2 εikεjlg

kl
(0) −

4πρ
s
Bεij

)
vj[1] −

∑
I

kIiw
j
Iζj[1] = 0 .

(A.28)
In order to find quasinormal modes we set the sources to zero ζi[1] = 0, which then
leads to vj[1] = 0.18 This in turn leads to the trivial perturbation with δcI[0] = 0 as
well.

ω[1] = 0: in this case, (A.27) contributes nothing new. However, at next order in ε, the
continuity equations will lead to another version of (A.27), but with ω[1] → ω[2]. The
only way this relation can avoid conflicting with the combination of (A.5) and (A.25)
is if δT[0] = δµ[0] = 0.

We now solve the horizon vector constraint at order O(ε2) to write

Ts vj[2] = iω[2]
∑
I

λjI δc
I
[0] + T κ̄jiH

(
ζi[2] − iqiT−1 δT[1]

)
+ T ᾱjkH

(
Ek[2] − iqkδµ[1]

)
, (A.29)

where we have defined

σij0 = τ (0)s

4π gij(0) , Nik = δi
k + B

ρ
εijσ

jk
0 , ηIi = 1

4πT Φ(0)
I kIi ,

ᾱikH = 4πρ
(
B−1

)ij
Njk , κ̄ikH = 4πTs

(
B−1

)ik
, λjI = T κ̄jiHη

I
i , (A.30)

where Bij is given in (A.26) and indices in N are raised and lowered with the horizon
metric g(0)ij . The expressions (A.22) and (A.24) for the currents contain the horizon fluid
velocity vi[2]. Substituting (A.29), leads to the constitutive relations (3.18) presented in the
main text. Essentially the explicit lattice has allowed us to integrate out the fluid velocity,
and this was conveniently done by solving the constraints at the black hole horizon.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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