Zhengyang Bai
Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases
Bai, Zhengyang; Adams, Charles S.; Huang, Guoxiang; Li, Weibin
Abstract
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors where the laser resonantly excites atoms to Rydberg P states via a single-photon transition. Three different regimes of the light-atom interaction, dominated by either Doppler broadening, Rydberg atom interactions, or decay due to thermal collisions between ground state and Rydberg atoms, are found. We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect as well as collisional decay, leading to a sizable dispersive optical nonlinearity on nanosecond timescales. In this regime, self-induced transparency (SIT) emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction, rather than the area theorem of interaction-free SIT. We identify, both numerically and analytically, the condition to realize Rydberg SIT. Our study contributes to efforts in achieving quantum information processing using glass cell technologies.
Citation
Bai, Z., Adams, C. S., Huang, G., & Li, W. (2020). Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases. Physical Review Letters, 125(26), Article 263605. https://doi.org/10.1103/physrevlett.125.263605
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 1, 2020 |
Online Publication Date | Dec 31, 2020 |
Publication Date | Dec 31, 2020 |
Deposit Date | Sep 30, 2021 |
Publicly Available Date | Sep 30, 2021 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 125 |
Issue | 26 |
Article Number | 263605 |
DOI | https://doi.org/10.1103/physrevlett.125.263605 |
Public URL | https://durham-repository.worktribe.com/output/1234856 |
Files
Published Journal Article
(1.3 Mb)
PDF
Copyright Statement
Reprinted with permission from the American Physical Society: Bai, Zhengyang, Adams, Charles S., Huang, Guoxiang & Li, Weibin (2020). Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases. Physical Review Letters 125(26): 263605. © (2020) by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
You might also like
Giant microwave–optical Kerr nonlinearity via Rydberg excitons in cuprous oxide
(2024)
Journal Article
Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system.
(2024)
Journal Article
Emergence of Synchronization in a Driven-Dissipative Hot Rydberg Vapor
(2023)
Journal Article
Rapid readout of terahertz orbital angular momentum beams using atom-based imaging
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search