Karen Wadenpfuhl karen.wadenpfuhl@durham.ac.uk
PGR Student Not Applicable
Emergence of Synchronization in a Driven-Dissipative Hot Rydberg Vapor
Wadenpfuhl, Karen; Adams, C. Stuart
Authors
Professor Stuart Adams c.s.adams@durham.ac.uk
Professor
Abstract
We observe synchronization in a thermal (35-60 °C) atomic (Rb) ensemble driven to a highly excited Rydberg state (principle quantum number n ranging from 43 to 79). Synchronization in this system is unexpected due to the atomic motion; however, we show theoretically that sufficiently strong interactions via a global Rydberg density mean field cause frequency and phase entrainment. The emergent oscillations in the vapor's bulk quantities are detected in the transmission of the probe laser for a two-photon excitation scheme.
Citation
Wadenpfuhl, K., & Adams, C. S. (2023). Emergence of Synchronization in a Driven-Dissipative Hot Rydberg Vapor. Physical Review Letters, 131(14), Article 143002. https://doi.org/10.1103/PhysRevLett.131.143002
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 23, 2023 |
Online Publication Date | Oct 6, 2023 |
Publication Date | Oct 6, 2023 |
Deposit Date | Oct 31, 2023 |
Publicly Available Date | Oct 31, 2023 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 131 |
Issue | 14 |
Article Number | 143002 |
DOI | https://doi.org/10.1103/PhysRevLett.131.143002 |
Public URL | https://durham-repository.worktribe.com/output/1872731 |
Files
Published Journal Article
(2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
You might also like
Giant microwave–optical Kerr nonlinearity via Rydberg excitons in cuprous oxide
(2024)
Journal Article
Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system.
(2024)
Journal Article
Rapid readout of terahertz orbital angular momentum beams using atom-based imaging
(2022)
Journal Article
Terahertz electrometry via infrared spectroscopy of atomic vapor
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search