R. S. Gupta
Small instantons and the strong CP problem in composite Higgs models
Gupta, R. S.; Khoze, V. V.; Spannowsky, M.
Authors
Professor Valentin Khoze valya.khoze@durham.ac.uk
Professor
Professor Michael Spannowsky michael.spannowsky@durham.ac.uk
Director
Abstract
We show that QCD instantons can generate large effects at small length scales in the ultraviolet in standard composite Higgs models that utilize partial compositeness. This has important implications for possible solutions of the strong CP problem in these models. First we show that in the simplest known UV completions of composite Higgs models, if an axion is also present, it can have a mass much larger than the usual QCD axion. Even more remarkable is the case where there are no axions, but the strong CP problem can be solved by generating the up quark mass entirely from the contribution of instantons thus reviving the massless up-quark solution for these models. In both cases no additional field content is required apart from what is required to realize partial compositeness.
Citation
Gupta, R., Khoze, V., & Spannowsky, M. (2021). Small instantons and the strong CP problem in composite Higgs models. Physical Review D, 104(7), Article 075011. https://doi.org/10.1103/physrevd.104.075011
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 9, 2021 |
Online Publication Date | Oct 7, 2021 |
Publication Date | Oct 1, 2021 |
Deposit Date | Jan 19, 2022 |
Publicly Available Date | Jan 20, 2022 |
Journal | Physical Review D |
Print ISSN | 2470-0010 |
Electronic ISSN | 2470-0029 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 104 |
Issue | 7 |
Article Number | 075011 |
DOI | https://doi.org/10.1103/physrevd.104.075011 |
Public URL | https://durham-repository.worktribe.com/output/1216564 |
Files
Published Journal Article (Advance online version)
(498 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
You might also like
Effective limits on single scalar extensions in the light of recent LHC data
(2023)
Journal Article
Quantum fitting framework applied to effective field theories
(2023)
Journal Article
Quantum optimization of complex systems with a quantum annealer
(2022)
Journal Article
Quantum walk approach to simulating parton showers
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search