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We show that QCD instantons can generate large effects at small length scales in the ultraviolet in
standard composite Higgs models that utilize partial compositeness. This has important implications for
possible solutions of the strong CP problem in these models. First we show that in the simplest known UV
completions of composite Higgs models, if an axion is also present, it can have a mass much larger than the
usual QCD axion. Even more remarkable is the case where there are no axions, but the strong CP problem
can be solved by generating the up quark mass entirely from the contribution of instantons thus reviving the
massless up-quark solution for these models. In both cases no additional field content is required apart from
what is required to realize partial compositeness.
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I. INTRODUCTION

The strong CP problem is one of the five major particle
physics puzzles that motivate the existence of new physics
beyond the Standard Model (SM). The most elegant
solution to this problem is the existence of a new Uð1Þ
symmetry that is anomalous under QCD so that it is
possible to rotate away the strong CP phase. The simplest
possibility is that the up quark is massless which leads to
the existence of an axial Uð1Þ symmetry that makes the
strong CP phase unphysical. Another possibility is the
existence of the Peccei-Quinn Uð1Þ symmetry that is
spontaneously broken resulting in a Goldstone mode, the
axion. As the Peccei-Quinn symmetry is anomalous under
QCD, the axion gets a potential due to nonperturbative
QCD effects and stabilizes at a value that leads to a
vanishing strong CP phase [1–3].
Both the above solutions are thought to have unambigu-

ous low energy consequences. The massless up quark
solution [4–8] can be tested by lattice simulations.
Unfortunately the latest lattice studies indicate a nonzero
up mass, that seemingly falsifies this possibility [9,10].
This leaves the Peccei-Quinn solution which predicts the
existence of the axion with a mass and coupling that is
restricted to lie in a narrow band in the parameter space.
A vigorous experimental effort that aims to probe the full
band is currently underway.

The above predictions, however, rely on the tacit
assumption that any nonperturbative contribution to the
up mass in the first case or to the axion in the second case,
arises from the large instantons in the IR. If small instantons
in the UValso become important it will completely alter the
above experimental expectations. Previous attempts to
enhance these UV contributions to the axion mass require
additional elements–such as new colored fermions [11,12],
extra dimensions [13] or a UV modification of the QCD
gauge group [14–16].
In this work we show that small instanton contributions

can become important in composite Higgs models with
partially composite fermions [17,18]. This can be achieved
with no additional field content other than what is neces-
sary to fully realize partial compositeness in standard UV
completions of these models.
The enhancement of small instanton effects in composite

model is possible because the two factors that suppress
small instanton contributions in the SM, namely, the
smallness of the strong coupling in the UV and the
smallness of the product of the SM Yukawa couplings,
can both be overcome in these models. The first suppres-
sion factor can be overcome because, as we will show, in
order to generate composite partners for all SM fermions,
many new colored fermions need to be introduced. These
new degrees of freedom alter the running of the QCD
strong coupling in the UV where it grows again to non-
perturbative values. As far as the suppression due to the
Yukawa couplings is concerned, this can be overcome
because in these models the effective SM Yukawa matrices
can be anarchic and Oð1Þ in the UV.
We show that the enhancement of the small instanton

contributions can be so effective in these models that it may
be possible to generate the entire mass of the up quark from
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instanton effects. This leads to a solution of the strong CP
problem as in the deep UV the up Yukawa is absent and
indeed an additional Uð1Þ symmetry related to the axial
rotation of left and right handed up quarks exists; such a
chiral rotation can be used to completely rotate away the
strong CP phase. We also show that in an alternative
scenario where an axion field exists, its mass would lie
outside the usual band for the QCD axion because of the
enhancement of strong instanton effects in these models.
.

II. MODEL

We consider a straightforward extension of one of the
simplest known UV completions of composite models
[17,18] by Ferretti [19] where the confining hypercolor
gauge group is SUð4ÞHC. The field content of our model is
shown in Table I. The original model in Ref. [19] only has a
single pair of fermions, χu and χ̃u, and it can generate
partners only for one left handed doublet and one right
handed up-type quark. In order to obtain partners for all SM
fermions we have extended the field content of the original
model by simply taking three copies, χiu and χ̃iu with
i ¼ 1–3, and also introducing the analogous fields χjd and
χ̃jd that will give rise to partners for the down-type SM
fermions The Lagrangian,

Lk ¼−iðχ̄iu=Dχiuþ χ̄jd=Dχjdþ ¯̃χku=Dχ̃kuþ ¯̃χld=Dχ̃jl þ ψ̄=DψÞ ð1Þ

thus has an additional SUð3Þ4F ¼ SUð3Þu1F × SUð3Þu2F ×
SUð3Þd1F × SUð3Þd2F symmetry not present in the model
in Ref. [19]. Note that in our notation above we have only
made the index, fi; j; k; lg, corresponding to the SUð3Þ4F
symmetry explicit.

A. Running of hypercolor coupling

With the additional matter content, the hypercolor group
in our model is no longer asymptotically free as in the
original model in Ref. [19]. As is standard for models
employing fermionic partial compositeness [17,18], we
assume instead, that the theory has a strongly coupled
UV fixed point. This is possible, for instance, if the
β-function of the hypercolor gauge coupling has the kind

of dependance on the gauge coupling proposed in Ref. [20]
and shown in Fig. 1. We will assume that our model lives in
the region g > g⋆ and flows from the UV fixed point g ¼ g⋆
to larger values g > g⋆ in the IR where it confines.

B. Global symmetry breaking pattern

When the hypercolor group SUð4ÞHC confines ψ , χiu;d
and χ̃iu;d form TeV-scale condensates,

hψpψqi ∼ δpqfdψψ ; hχp;iu χ̃p;ju i ∼ δijf
d
χueχu

χu ;

hχp;id χ̃p;jd i ∼ δijf
d
χdeχd

χd ð2Þ

thus breaking the original global symmetry. Here p, q are
the indices under the SUð5Þ global symmetry and fi; jg the
indices under the SUð3Þu1;d1F × SUð3Þu2;d2F flavor symmetry
whereas dψψ , dχueχu and dχdeχd denote the scaling dimensions

of the respective condensates. The condensates break
SUð5Þ to SOð5Þ and SUð3Þ × SUð3Þ0 down to the diagonal
SUð3Þc as in Ref. [19]. The coset space, GF=HF, is given
by,

SUð5Þ × SUð3Þ × SUð3Þ0 × SUð3Þ4F ×Uð1Þ4
SOð5Þ × SUð3Þc × SUð3Þ2F ×Uð1ÞX × Uð1ÞB

ð3Þ

where Uð1Þ4 ¼ Uð1ÞX × Uð1ÞB × Uð1ÞA1 × Uð1ÞA2 and
the symmetry SUð3Þ4F ¼ SUð3Þu1F × SUð3Þu2F ×
SUð3Þd1F × SUð3Þd2F breaks to the diagonal subgroup
SUð3Þ2F ¼ SUð3ÞuF × SUð3ÞdF.

TABLE I. The two-component left-handed fermions of the UV theory. The confining hypercolor gauge group is GHC and GF ¼
SUð5Þ × SUð3Þ × SUð3Þ0 × SUð3Þ4F ×Uð1ÞX × Uð1ÞB × Uð1ÞA1 ×Uð1ÞA2 is the global symmetry group before symmetry breaking
where SUð3Þ4F ¼ SUð3Þu1F × SUð3Þu2F × SUð3Þd1F × SUð3Þd2F .

SUð4ÞHC SUð5Þ SUð3Þ SUð3Þ0 SUð3Þ4F Uð1ÞX Uð1ÞB Uð1ÞA1 Uð1ÞA2
ψ 6 5 1 1 ð1; 1; 1; 1Þ 0 0 −18=5 0
χiu 4 1 3 1 ð3; 1; 1; 1Þ −1=3 −1=6 1 1
χ̃iu 4̄ 1 1 3̄ ð1; 3̄; 1; 1Þ 1=3 1=6 1 1

χjd 4 1 3 1 ð1; 1; 3; 1Þ 1=6 −1=6 1 −1
χ̃jd 4̄ 1 1 3̄ ð1; 1; 1; 3̄Þ −1=6 1=6 1 −1

FIG. 1. The assumed dependance of the hypercolor β-function
on the gauge coupling. Our model lives in the region g > g⋆.
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The unbroken diagonal SUð3Þc is gauged to give the
QCD Lagrangian. The electroweak group is also gauged.
It is embedded in SOð5Þ as follows,

SOð5Þ × SUð3Þc ×Uð1ÞX
⊃ Gcus: ≡ SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞX
⊃ GSM ≡ SUð3Þc × SUð2ÞL ×Uð1ÞY
⊃ SUð3Þc ×Uð1Þe:m:; ð4Þ

where hypercharge generator is given by Y ¼ T3R þ X, T3R
being the diagonal SUð2ÞR generator.
The Lagrangian in Eq. (1) is invariant under 5 indepen-

dent Uð1Þ symmetries, one associated with the rotation of
each of the five fermion species χiu; χid; χ̃

i
u; χ̃iu, and ψ . Two

of these Uð1Þs are not spontaneously broken by the
condensates in Eq. (2). The first is the linear combinations
of these five symmetries that corresponds to the Uð1ÞX
symmetry in Table I. The second is a linear combination of
these Uð1Þs that can be identified with, Uð1ÞB, the
extension of the baryon number symmetry that includes
the new fields. There are three remaining Uð1Þs that get
broken spontaneously by the condensates. One linear
combination of these three Uð1Þs is anomalous and thus
not a true symmetry, which is why it does not appear in
Eq. (3). This still leaves two Uð1Þs, namely Uð1ÞA1 and
Uð1ÞA2, shown in Table I.
There are two Goldstone bosons, η01 and η02, correspond-

ing to the spontaneous breaking of Uð1ÞA1 and Uð1ÞA2,
respectively. In the electroweak sector the symmetry break-
ing pattern, SUð5Þ → SOð5Þ gives rise to 14 pseudo-
Goldstone bosons. These include the Higgs doublet, H,
a real singlet, a hyprcharge neutral SUð2ÞL triplet and a
complex SUð2ÞL triplet charged under hypercharge. As we
will discuss shortly, these and all other Goldstone modes
become massive once we introduce other terms in the
Lagrangian that explicitly break the original global sym-
metry, GF.

C. Partial compositeness

We will now discuss how partial compositeness can be
realized in this model. We need a composite fermionic
partner for each of the SM fermions. In the UV near the
fixed point g ¼ g⋆ in Fig. 1 we identify the following
baryonic operators,

Oc;i
uL ¼ ðχuψχuÞi Oi

uR ¼ ðχ̄uψ̄ χ̃uÞi
Oc;i

dL ¼ ðχdψχdÞi Oi
dR ¼ ðχ̄dψ̄ χ̃dÞi; ð5Þ

which have components that have the right transformation
properties to be partners of right-handed up type quarks,
left-handed up type quarks, right-handed down type quarks
and left-handed down type quarks respectively These are all
left-handed two component spinor states that transform as

triplets under SUð3Þc. Here i denotes the index correspond-
ing to the SUð3ÞuðdÞF flavor group under which the up type
(down type) states transform as a triplet.
The operator Oi

uR transforms as ð5; 3Þ2=3 under
SOð5Þ × SUð3Þc ×Uð1ÞX. It has components, that we call
Ui

R, which transform as ð3; 1Þ2=3 under SUð3Þc ×
SUð2ÞL ×Uð1ÞY that can be identified as the partner for
uc;iR , the antiparticle for the SM right-handed up quarks.
Similarly Oc;i

uL transforms as ð5; 3̄Þ−2=3 under SOð5Þ ×
SUð3Þc × Uð1ÞX and has components that transform as
ð3̄; 2Þ−2=3 under SUð3Þc × SUð2ÞL ×Uð1ÞY. We will call

these components, Uc;i
L , and they will serve as partners for

the SM left handed up-type fermions.
As far as, Oj

dR and Oc;j
dL, are concerned they transform

respectively as ð5; 3Þ−1=3 and ð5; 3̄Þ1=3 under SOð5Þ×
SUð3Þc × Uð1ÞX. They, have components that transform
respectively as ð3; 1Þ−1=3 and ð3̄; 2Þ1=3 under SUð3Þc×
SUð2ÞL ×Uð1ÞY ; we will call these Dj

R and Dc;j
L , the

partners for the right-handed antidown quarks and the
left-handed down quarks.
The partial compositeness Lagrangian can now be

realized by linearly coupling the SM fermions to their
partners,

Lmix ¼
λijuR
4π

1

ΛdUR
−5=2 u

c;i
R Uj

R þ λijuL
4π

1

ΛdUL
−5=2 q

i
LU

c;j
L

þ λijdR
4π

1

ΛdDR
−5=2 d

c;i
R Dj

R þ λijdL
4π

1

ΛdDL
−5=2 q

i
LD

c;j
L

þ H:c: ð6Þ

where dF is the conformal dimension of the corresponding
operator, F. The conformal dimensions are independent of
the flavor indices i, j because of the SUð3ÞuF × SUð3ÞdF
symmetry. The coupling of the SM fermions to the other
possible baryonic operators—such as the right-handed SM
quarks with ð ¯̃χu;dψ ¯̃χu;dÞi and ðχu;dψχu;dÞi or the left-handed
quarks with ð ¯̃χu;dψ ¯̃χu;dÞi and ð ¯̃χu;dψ̄χu;dÞi—is prohibited as
we impose a Z2 symmetry under which χiu;d and the SM
right-handed fermions are odd.
In the IR after confinement the above operators lead to

composite states that pair with charge conjugates states
(that can be obtained by interchanging χu;d ↔ χ̃u;d) to form
massive Dirac fermions. Once these are integrated out the
SM Yukawa coupling between the SM fermions and the
composite Higgs boson is generated (see, e.g., Ref. [18]).

D. Explicit breaking by masses and four-ψ interaction

Finally we add some additional terms not present in the
original model of Ref. [19],
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Lnew ¼ m0eiθmψ0ψ0 þ
g4ψeiθg

Λ2
ðψ̄−þσ̄μψ0Þðψ̄þ−σ̄

μψ0Þ ð7Þ

where m0 and g4ψ are real, and the subscript fα; βg in ψαβ

in the last term refers to the T3R;3L charges. To make our
notation clear and to understand how each of these
components of ψ transform, recall that fermion ψ trans-
forms as a 5 of SUð5Þ. This decomposes into two SUð2ÞL
doublets and an SUð2ÞL singlet,

0
BB@

Ψþ
Ψ−

ψ0

1
CCA; ð8Þ

Ψ� are SUð2ÞL doublets and the� subscripts correspond to
T3R ¼ �1=2. We can explicitly write ΨT

� ¼ ðψ�þ;ψ�−Þ
where the second index now corresponds to the
T3L ¼ �1=2.
The first term breaks Uð1ÞA1 and thus gives a mass to η01.

The η01 does not get a contribution form the mixing terms in
Eq. (6) as we can extend the Uð1ÞA1 symmetry to the SM
fermions in a way that is preserved by Eq. (6), i.e., by
giving the Uð1ÞA1 charges, 8=5 and 18=5, respectively to
the SM doublet and singlet fermions. The η01 actually would
eventually get a contribution to its mass also from non-
perturbative QCD effects as the above extended Uð1ÞA1 is
anomalous under QCD. On the other hand, Uð1ÞA2 is
already broken by the mixing terms in Eq. (6) which give η02
a mass.
The second term in Eq. (7) is a four-ψ interaction

between components of the fermion ψ that explicitly breaks
the original global symmetry SUð5Þ. This term would be
essential in enhancing the QCD small instanton contribu-
tions in the next section.

E. A minimally flavor and CP violating strong sector

Notice that or model defined by lagrangian in Eq. (1) is
invariant under CP and the SUð3ÞuF × SUð3ÞdF flavor
symmetry even after the condensates in Eq. (2) are formed.
These symmetries are broken only by the couplings
λijuL; λ

ij
uR; λ

ij
dL; λ

ij
dR; g4ψe

iθg ; mϕeiθm and the strong CP phases
in the QCD and hypercolor sectors, θQCD and θ0 respec-
tively. Following Ref. [21], here we will further assume that
the mixings of the right handed quarks,

λijuR;dR ∼ yuR;dReiθRδij; ð9Þ

do not break the SUð3ÞuF × SUð3ÞdF symmetry when
appropriately extended to include the three generations
of SM right handed quarks as triplets. This implies that the
SM Yukawa couplings would be proportional to the left-
handed mixings,

Yij
u ∼

λikuLλ
kj
uR

4π
∼ λijuLyuR

Yij
d ∼

λikdLλ
kj
dR

4π
∼ λijdLydR: ð10Þ

Note that in the limit λijuL;dL → 0 the full Uð3Þ3 SM flavor
symmetry is recovered. Our, setup thus realizes minimal
flavor violation (MFV) [22] with the couplings λijuL;dL—that
transform like the SM Yukawa terms—being the only
spurions that break the Uð3Þ3 flavor symmetry.
As far as CP phases, θm; θg; θR; θQCD, and θ0 are

concerned, we can transfer all of them to λijuL and λijdL by
taking the following steps:
(1) First, the phase θm can be rotated away by ψ0 →

ψ0e−iθm=2 which redefines θg, θR and θ0.
(2) Next, the phase θg associated to g4ψ can be rotated

to λijuL and λijdL by making the transformation
ψ−þ → ψ−þeiθg . This also redefines θ0.

(3) Then θ0 can be eliminated by an equal rotation of all
χi and χ̃i, which also redefines θQCD.

(4) Finally θR can be eliminated by an equal but
opposite rotation of the χi relative to the χ̃i.

This still leaves θQCD which can be entirely shifted to λijuL
and λijdL by chiral rotations of the SM quarks while keeping
the combination,

θ̄QCD ¼ θQCD þ ArgDet½λuλd� ð11Þ

unchanged. Because we have a MFV like structure, as in
the SM, there is only one more physical phase in our theory,
the CKM phase,

θCKM ¼ ArgDet½λuλd − λdλu�: ð12Þ

III. EFFECT OF SMALL INSTANTONS

The effect of QCD instantons at high energies are
suppressed due to two reasons, (1) the suppression factor
κs ¼ e−2π=αs is small as QCD is asymptotically free, and,
(2) there is a suppression factor that goes as the product of
the Yukawa couplings of all the SM quarks, all of which are
active at high energies. Both these effects can be overcome
in the model we are considering because, (1) the new
colored fermions χiu;d and χ̃iu;d that form the composite
fermionic partners can lead to large UV values of the QCD
coupling and (2) the mixings, λijuL;dL, and thus the Yukawas
in Eq. (10) can run to higher values in the UV in these
models as we will now show.

A. Running of αs

In our model there are 8 new flavors of fermions for every
generation once we take into account the 4 hypercolor
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degrees of freedom of χu;di ; χ̃u;di . Including the SM fermions,
there are nf ¼ 30 flavors. Using the usual expression,

dgs
d log μ

¼ −ð11 − 2nf=3Þ
g3s

16π2
ð13Þ

we find that the QCD beta function is positive. Assuming
that the new flavors become active at 1 TeV we find that
gs ¼ 4π for μ ∼ 2000 TeV where the instanton vertex will
become unsuppressed.
We will assume that some UV degrees of freedom cut off

this growth of this coupling above a scale M ∼ 2000 TeV
such that κs has a maximal value at this scale. We will treat
this maximal value as a free parameter that can vary from
κs ¼ 10−34 for gs ¼ 1 to κs ∼ 1 for gs ¼ 4π. We will also
assume that at a scale M0 > M, the QCD gauge coupling
growth is tamed, κs becomes negligible and the QCD
instantons are again highly suppressed.

B. Running of λijf
We will work in the mass basis where λijuLðM0Þ ¼

diag½yuL; ycL; ytL� and λijdLðM0Þ ¼ diag½ydL; ysL; ybL�. The
couplings yf run between the UV and IR scale,
m⋆ ∼ 1 TeV, of the composite masses,

μ
dyf
dμ

¼ ðdF − 5=2Þyf þ b
NHCy3f
16π2

ð14Þ

where b is anOð1Þ factor, NHC ¼ 4 is the number of colors
for the hypercolor group and dF is the conformal dimension
of the operator corresponding to the fermionic partner, F,
that couples to the SM fermion, f. The first term allows an
anarchic and Oð1Þ valued matrix λijf ðMÞ to generate a

hierarchical λijf ðm⋆Þ thus explaining the SM masses and
mixings. This can be seen if we solve the above equation by
ignoring the second term,

yfðm⋆Þ ¼ yfðMÞ
�
m⋆
M

�
dF−5=2

; ð15Þ

which shows that Oð1Þ differences in the dj can lead to
exponential hierarchies in the IR. Including the second term
does not change this qualitative feature, in fact it can lead to
hierarchies between couplings involving operators with the
same dF. In particular it results in a fixed point at yf ¼
4π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bNHCγF

p
where γF ¼ dF − 5=2.

IV. UPQUARKMASS FROMSMALL INSTANTONS

In this section we will consider the model defined in
Sec. II and assume that one of the eigenvalues of λijuL
vanishes at the scale M0 where instanton effects are
negligible, i.e., yuLðM0Þ ¼ 0. Instanton effects around the
scale M then generate a nonzero value for the up quark

mixing, yuL, via the ’t Hooft vertex. We will work with the
lagrangian obtained after all the phase redefinitions in
Sec. II E have been performed.

A. Nonperturbative generation of yuL
The ’t Hooft instanton vertex due to the QCD anomaly in

this model is an interaction including all the colored
fermion species. In Fig. 2(a) we show only the first
generation fermions, uL; ucR; dL; d

c
R; χ

1
u; χ̃1u; χ1d and χ̃1d

explicitly. Working in the mass basis we start from the
anomaly vertex to generate the yuLuLUc1

L term as shown in
Fig. 2(a). The fermions of the other generations have not
been shown for space constraints but a identical topology
exists for them with the only difference that now the cL-Uc2

L
and tL-Uc3

L lines are also closed by the couplings y�cL
and y�tL.
To get the NDA estimate for yuL we can redraw the same

diagram but now in terms of QCD and hypercolor singlets
as shown in Fig. 2(b). If one considers the pairs, Uc1

L U1
R,

Uc1
L Uc1

L0, D
c1
L D1

R, and Dc1
L Dc1

L0 as QCD singlet scalars, this
diagram becomes very similar to the one considered in
Ref. [11] where new scalars connect fermion pairs, such as
uLucR to dLdcR, in the ’t Hooft vertex. The result of a full
calculation in Ref. [11] is that the only suppression factor is
given by,

Q
f Yf=4π, where the Yf are the Yukawa

couplings of the scalars to the fermion pairs. In our case
the coupling of the SM fermions to the scalars, formed from
the composite partners, reaches its perturbative limit for
y�fL ¼ y�fR ¼ 4π. Thus adapting the result of Ref. [11] to
our case, and including a suppression factor corresponding
to g4ψ , we obtain,

yuL
4π

∼ κs

�
g4ψ
16π2

�
3 y�uR
4π

Y
f¼d;s;c;b;t

y�fL
4π

y�fR
4π

; ð16Þ

where all the above couplings are at the scale M, and
following Eq. (9), all the yfR ¼ yuR;dR depending on
whether f is an up or down type fermion. The white
circles in Fig. 2(b) represent vertices arising from the strong
sector whereas the dark circles denote vertices external to
the strong sector. Here we have assumed a suppression only
due to the former couplings.
The known value of the up quark Yukawa can be

reproduced in the strongly coupled regime when the
couplings in Eq. (16) saturate their perturbative limit.
For instance we obtain for the up Yukawa,

Yuðm⋆Þ ∼
yuLðm⋆ÞyuRðm⋆Þ

4π
∼ 1.5 × 10−5κs

�
g4ψ
16π2

�
3

ð17Þ

if we solve the RG equations in Eq. (14) assuming b ¼ 1=4,
taking dUL;DL

¼ 7=2, yuR;dRðMÞ ¼ 4π in Eq. (9),
yuR;dRðm⋆Þ ¼ yuR;dRðMÞ=10, and other boundary
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conditions fixed by the measured value of the SM fermions
masses.

B. Solution to the strong CP problem

Let us first consider the scale M0 at and above which
QCD instanton effects are suppressed so that yuLðM0Þ ¼ 0.
At this scale the phase θQCD can be removed simply by a
chiral rotation of the up quark fields.
It is still instructive to see how, at leading order, θQCD

vanishes just below the scale M where QCD instanton
effects become important. These effects generate a non-
zero yuL given by Eq. (16). As explained in Sec. II E,
we are working in a convention where chiral rotations
are used to transfer all the phases to the mixing matrices
Λij

=F and there is no GG̃ coupling to start with. A

contribution to θ̄QCD from the fermionic phases can arise
at this scale from closing the ’t Hooft vertex completely,
which gives,

θ̄QCDðMÞ ¼ Arg

�
y�uLy

�
uR

Y
f¼d;s;c;b;t

y�fLy
�
fR

�

¼ Arg

� Y
f¼u;d;s;c;b;t

jyfLj2jyfRj2
�

¼ 0: ð18Þ

where we used Eq. (16) for deriving the second line.
While Eq. (16) gives the leading contribution to yuL,
subleading contributions from other diagrams that close

the ’t Hooft vertex are possible. These contributions,
however, will have the same parametric dependance as
Eq. (16) because of the fact that our set-up realizes MFV
as shown in Sec. II E. Furthermore, the fact that all phases
in our Lagrangian can be transferred to the λijuL;dL means
that there will be no relative phase between the different
contributions. Their final contribution to θ̄QCDðMÞ will
thus vanish as in the equation above.
In Appendix we discuss whether higher dimensional

operators that break the global symmetries in our model, in
particular those that lead to a violation of MFV, can spoil
the success of our mechanism. We find that not only is our
framework robust when Planck scale global symmetry
breaking effects are included, it can be successful even
if we allow the breaking of global symmetries at the
scale Λ ∼M.
There is only one more physical phase in our theory, the

CKM phase, θCKM, as explained in Sec. II E. From the scale
M to the experimental scale, θCKM can induce θ̄QCD due to
renormalization group (RG) effects, but as in the SM this is
expected to be highly suppressed. This is because the
arguments based on spurion analysis for the SM in
Ref. [23] can be adapted to our model to show that this
effect is at least 7-loop suppressed [24].

V. A HEAVY AXION FROM SMALL INSTANTONS

Now we consider a different scenario from Sec. IV,
taking yuLðM0Þ ≠ 0, but introduce a new pseudoscalar field,

FIG. 2. (a) Diagram showing the QCD instanton contribution to generate uLUc
L including only the first generation of fermions; the

generation indices for the hypercolor fermions have been omitted for convenience. An identical topology exists for the other generations
with the only difference that the cL-Uc2

L and tL-Uc3
L lines are closed by the couplings y�cL and y�tL. The red lines do not intersect with the

others. (b) The same diagram drawn in terms of lines of hypercolor and QCD singlets. The white circles represent unsuppressed vertices
arising from the strong sector whereas the dark circles denote vertices suppressed by couplings external to the strong sector.
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ϕ. In addition to all the Lagrangian terms in Sec. II, we
consider the new term,

Lϕ ¼ g2s
32π2

ϕ

f
GμνG̃

μν: ð19Þ

where we take f ≳M ∼ 106 GeV. We assume that above
term is the only one that breaks the shift symmetry of ϕ via
anomalous QCD effects so that it can be identified with the
QCD axion.
Nonperturbative effects at the scale M in the UVas well

as the usual QCD scale in the IR will contribute to the axion
potential. The UV contribution can be estimated by first
shifting θ̄QCD to the ’t Hooft vertex in Fig. 2(a) and 2(b) and
then completely closing all the fermion lines which is
possible now that yuL ≠ 0. This then gives a new contri-
bution to the axion potential,

VðϕÞ ¼ κM4 cos

�
ϕ

f
þ θ̄QCD

�
þm2

πf2π cos

�
ϕ

f
þ θ̄QCD

�

where,

κ ∼ κs

�
g4ψ
16π2

�
3 Y
f¼u;d;s;c;b;t

y�fL
4π

y�fR
4π

: ð20Þ

Again, all the above couplings are at the scaleM and all the
yfR ¼ yuR;dR depending on whether f is an up or down type
fermion [see Eq. (9)]. The second term above is the usual
large instanton contribution in the IR, with mπ being the
pion mass and fπ , the pion decay constant. Both the terms
are aligned in phase because both the contributions arise
from closing the same ’t Hooft vertex, but at different
scales. As in Sec. IV–the fact that MFV is respected in our
set-up and that all phases can be shifted to λijuL;dL, means
that any subleading part of the small instanton contribution
to the axion potential at the scale M, must be aligned in
phase to the terms in Eq. (20). We show in Appendix that
higher dimensional operators that break MFV can be
rendered harmless under some plausible assumptions.
Solving the RG equations in Eq. (14) assuming

b ¼ 1=4, taking dUL;DL
¼7=2, yuR;dRðMÞ¼4π in Eq. (9),

yuR;dRðm⋆Þ ¼ yuR;dRðMÞ=10, and other boundary condi-
tions fixed by the measured value of the SM fermions
masses, we obtain,

κ ∼ κs

�
g4ψ
16π2

�
3

4.2 × 10−4: ð21Þ

The above numerical value is the maximal possible one
corresponding to the case when all the couplings saturate
their perturbative limit. The factor, κs, can vary over a large
range from unity to exponentially small values as the
strong coupling is varied; the axion mass can thus vary

from its minimum value due to the IR contribution to
values as large as 10 TeV when the suppression factor, κ
approaches the maximal value in Eq. (21).
We show the allowed region in the coupling-mass

parameter space in Fig. 3, where the y-axis is gaγ the
axion coupling to photons, defined by the coupling,

−
gaγ
4

ϕFμνF̃μν; ð22Þ

where,

gaγ ∼
αem
2πf

: ð23Þ

We see that a huge area in the parameter space is allowed
for the QCD axion in this model. The usual QCD axion
band is the left edge of the area shown in Fig. 3. While parts
of this area are ruled out by existing constraints—in
particular cosmological ones in the region where a thermal
population of the axion can exist [27]—large parts of the
allowed region still remain unconstrained.

VI. CONCLUSIONS

In this work we showed that small instanton effects can
become very important in standard UV completions of
composite Higgs models with partially composite fer-
mions. This is possible because both the QCD gauge
coupling and effective Yukawa interactions run to larger
values with energy resulting in unsuppressed instanton
contributions in the UV. As far as the Yukawa interactions
are concerned, it is well known that in partially composite

FIG. 3. The allowed parameter space for the QCD axion of
Sec. V is shown in red. The other bounds have been adapted from
Refs. [14,27] where a detailed discussion of these can be found.
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models, the hierarchical nature of the SM fermion masses
and mixings can arise from anarchic and Oð1Þ interactions
in the UV. The QCD coupling grows because in order to
have fermionic partners for all SM fermions, many new
fermions in the hypercolor sector need to be introduced.
These fermions are also charged under QCD and this
generates a positive β-function which results in the QCD
gauge coupling running to nonperturbative values in the
UV. The only modification of the lagrangian required to
achieve this effect are the explicit breaking terms in Eq. (7).
As a consequence of this enhancement of small instanton

contributions, we show that the up quark mass can arise
entirely from instanton contributions. This implies that the
up quark mass vanishes in the deep UV and is only
generated additively by instanton effects. In the deep
UV one can thus rotate away the strong CP phase. In an
alternative scenario where an axion field exists, we show
that its mass can be as large as 10 TeV. The allowed
parameter space is much larger than the usual QCD band as
shown in Fig. 3. Our model thus opens up new areas in the
coupling-mass parameter space that are still unconstrained
by existing bounds. This motivates the development of new
experimental strategies to probe these regions.
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Note added.—While we were in the process of completing
this project, Ref. [28] appeared, that also provides a heavy
axion candidate in composite models. While this work also
utilizes the setup of Ref. [19], there is no overlap with
Sec. V. This is because Ref. [28] does not use the same
mechanisms for enhancing small instanton contributions,
namely running of the QCD gauge coupling and the λijf ,
that have been used in this work. The other important
differences include the fact that Ref. [28] has an in-built
axion candidate and, unlike this work, it requires a hyper-
color condensation scale of at least 1000 TeV resulting in a
tuned Higgs sector.

APPENDIX: EFFECT OF HIGHER
DIMENSIONAL OPERATORS

In this appendix we discuss whether higher dimensional
operators can spoil our solution to the strong CP problem.
Our analysis so far has been based on the assumption that
the only couplings breaking the SUð3ÞuF × SUð3ÞdF flavor
symmetry are the left-handed mixings, λijuL;dL, to which all
other phases in our lagrangian can be transferred as
explained in Sec. II E. Under this assumption our setup

respects minimal flavor violation (MFV). As explained
below Eq. (16) and Eq. (20) this ensures that there are no
subleading contributions, misaligned in phase to the up
mass in Sec. IV or to the heavy axion potential in Sec. V.
We now discuss to what extent our mechanism is robust

against the effect of higher dimensional operators that
introduce a new breaking of this flavor symmetry. For
instance any new contribution of these operators to the
mass matrix of SM fermions will break our MFV
assumption. The most dangerous effects can arise from
operators with two flavor indices, such as,

Q̄i
LOHu

j
R ðA1Þ

which introduces a SM like ‘Yukawa’ coupling that couples
the Higgs operator, OH ¼ ψ−þψ0, to SM fermions, or
operators like,

uc;iR ð ¯̃χuψ ¯̃χuÞj; uc;iR ðχuψχuÞj ðA2Þ

which correspond to bilinear mixings of SM fermions
with operators other than those in Eq. (6), and finally the
mass term,

mij
χuχ

i
uχ̃

j
u: ðA3Þ

For simplicity, we do not explicitly discuss the correspond-
ing operators with the SM quark doublets or the down-type
singlets which can be easily included along the same lines
while keeping our conclusions unchanged. All these
operators are prohibited if we impose a discrete Z2 gauge
symmetry, already introduced in Sec. II C, under which
under which χ̃iu;d and the SM right chiral fermions are odd.
Operators with even higher dimensions, that respect this

Z2 symmetry can, however, still give dangerous contribu-
tion to the fermion masses,

1

Λd1
=F
χ̃iuχ

i
uQ̄i

LOHu
j
R

1

Λd2
=F
uc;iR χ̃iuχ

i
uð ¯̃χuψ ¯̃χuÞj

1

Λd3
=F
uc;iR χ̃iuχ

i
uðχuψχuÞj

1

Λd4
=F
χ̃iuχ

i
uχ

i
uχ̃

j
u ðA4Þ

where d1, d2, d3, and d4 are the scaling dimensions of the
respective operators. Note that these operators break, not
only the SUð3ÞuF × SUð3ÞdF flavor symmetry, but also the
SUð5Þ global symmetry in the electroweak sector because
the SM quarks are not in full SUð5Þ representations. The
contributions of these operators are, however, suppressed
by the factor,

ε1 ∼
�
fχu
Λ=F

�
d
χueχu : ðA5Þ
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for the first three operators and by the factor,

ε2 ∼
�
fχu
Λ=F

�
2d

χueχu−4; ðA6Þ

for the last one. Recall that d
χueχu is the scaling dimension of

the condensate, hχ̃iuχiui.
For the case in Sec. IV where we generate the mass of the

up quark from small instantons, the above dangerous
operators can spoil our strong CP solution by either
generating a mixing of the left handed up to the strong
sector, i.e., yuL ≠ 0 at scales larger thanM, or by generating
a small instanton contribution misaligned in phase to the
one in Eq. (16). Both these contributions can be bounded
by requiring that the resulting θ̄QCD is within the exper-
imental bound, θ̄QCD ≲ 10−10, which implies,

ε1;2 ≲ 10−10: ðA7Þ

The above conditions will also ensure that any misaligned
contribution to the potential of the heavy axion in Sec. V is
within the current bound on θ̄QCD.
If MFV and the SUð5Þ global symmetry is broken

only by Planck scale operators, i.e. if we take Λ=F ¼Mpl,

the conditions in Eq. (A7) is easily satisfied given
fχu ¼ 1 TeV. Next we consider the case where the flavor
symmetry is broken at the scale, Λ=F ¼Λ¼M¼ 2000 TeV,

by the states required to generate the bilinear mixing terms
in Eq. (6) or by those required to tame the running of the
QCD coupling at the scale M. We see that for any d

χueχu ≥
7=2 the conditions in Eq. (A7) can be satisfied even in
this case.
Thus, our setup is completely robust if the global

symmetries are broken by only Planck-scale effects.
Even if we allow higher dimensional explicit breaking
effects at the scale Λ=F ¼ Λ ¼ M, we find that our mecha-
nism is safe under some plausible assumptions.
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