Skip to main content

Research Repository

Advanced Search

Spherical accretion of collisional gas in modified gravity I: self-similar solutions and a new cosmological hydrodynamical code

Zhang, Han; Weinzierl, Tobias; Schulz, Holger; Li, Baojiu

Spherical accretion of collisional gas in modified gravity I: self-similar solutions and a new cosmological hydrodynamical code Thumbnail


Profile Image

Han Zhang
Post Doctoral Research Associate

Holger Schulz


The spherical collapse scenario has great importance in cosmology since it captures several crucial aspects of structure formation. The presence of self-similar solutions in the Einstein-de Sitter (EdS) model greatly simplifies its analysis, making it a powerful tool to gain valuable insights into the real and more complicated physical processes involved in galaxy formation. While there has been a large body of research to incorporate various additional physical processes into spherical collapse, the effect of modified gravity (MG) models, which are popular alternatives to the ΛCDM paradigm to explain the cosmic acceleration, is still not well understood in this scenario. In this paper, we study the spherical accretion of collisional gas in a particular MG model, which is a rare case that also admits self-similar solutions. The model displays interesting behaviours caused by the enhanced gravity and a screening mechanism. Despite the strong effects of MG, we find that its self-similar solution agrees well with that of the EdS model. These results are used to assess a new cosmological hydrodynamical code for spherical collapse simulations introduced here, which is based on the hyperbolic partial differential equation engine ExaHyPE 2. Its good agreement with the theoretical predictions confirms the reliability of this code in modelling astrophysical processes in spherical collapse.We will use this code to study the evolution of gas in more realistic MG models in future work.

Journal Article Type Article
Acceptance Date Jul 12, 2022
Online Publication Date Jul 22, 2022
Publication Date 2022-09
Deposit Date Jul 13, 2022
Publicly Available Date Jul 13, 2022
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 515
Issue 2
Pages 2464-2482
Public URL


Accepted Journal Article (2.1 Mb)

Copyright Statement
© The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

You might also like

Downloadable Citations