MNRAS 000, 1-19 (2022) Preprint 13 July 2022 Compiled using MNRAS IXTEX style file v3.0

Spherical accretion of collisional gas in modified gravity I: self-similar
solutions and a new cosmological hydrodynamical code

Han Zhang,'* Tobias Weinzierl,>> Holger Schulz? and Baojiu Li!

Unstitute for Computational Cosmology, Department of Physics, Durham University, Durham DHI 3FE, United Kingdom
2Department of Computer Science, Durham University, Durham DHI 3FE, United Kingdom
3 Institute for Data Science, Large-Scale Computing, Durham University, Durham DHI 3FE, United Kingdom

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

The spherical collapse scenario has great importance in cosmology since it captures several crucial aspects of structure formation.
The presence of self-similar solutions in the Einstein-de Sitter (EdS) model greatly simplifies its analysis, making it a powerful
tool to gain valuable insights into the real and more complicated physical processes involved in galaxy formation. While there has
been a large body of research to incorporate various additional physical processes into spherical collapse, the effect of modified
gravity (MG) models, which are popular alternatives to the ACDM paradigm to explain the cosmic acceleration, is still not well
understood in this scenario. In this paper, we study the spherical accretion of collisional gas in a particular MG model, which is
arare case that also admits self-similar solutions. The model displays interesting behaviours caused by the enhanced gravity and
a screening mechanism. Despite the strong effects of MG, we find that its self-similar solution agrees well with that of the EdS
model. These results are used to assess a new cosmological hydrodynamical code for spherical collapse simulations introduced
here, which is based on the hyperbolic partial differential equation engine ExAHYPE 2. Its good agreement with the theoretical
predictions confirms the reliability of this code in modelling astrophysical processes in spherical collapse. We will use this code

to study the evolution of gas in more realistic MG models in future work.

Key words: Methods: numerical — software: development — hydrodynamics

1 INTRODUCTION

Spherical collapse is a widely studied phenomenon in cosmology. It
describes the evolution of a spherically symmetric overdense region:
how it slows down and decouples from the Hubble flow, turns around,
and finally collapses into a singularity or some virialised matter dis-
tribution. Despite its simplicity, this scenario is of great importance,
as it can describe several crucial aspects of structure formation of
different matter components (e.g., collisionless dark matter and col-
lisional baryonic gas), thus providing valuable insights into the real
and more complicated cosmological process. Some cosmological hy-
drodynamical simulation codes also adopt this scenario as a test of
reliability (e.g., RAMSEs, Teyssier 2002).

The study of spherical collapse has a long history, with some of
the early works including Gunn & Gott (1972); Fillmore & Goldreich
(1984); Ryden & Gunn (1987); Subramanian et al. (2000). Among
them, Bertschinger (1985) revealed an elegant self-similarity in the
solution for a matter-dominated, Einstein-de Sitter (EdS), universe,
for both collisionless and collisional matter. Using the turnaround
radius, ri(2), in the EAS model, the various quantities in the system
of evolution equations can be rescaled, such that all the dependencies
on the spherical radius r and time ¢ are reduced into the dependence
on a single variable A=r/r,(t). This gives a unique set of solutions
of physical quantities, expressed in terms of A, which can be used to

* E-mail: han.zhang3 @durham.ac.uk

© 2022 The Authors

obtain the status of the evolution at arbitrary (r, ). Spherical collapse
is therefore one of the few scenarios where a detailed semi-analytical
solution is known in cosmology.

In the past decades, a lot of effort has been made to incorporate
more physical processes into the spherical collapse model. Based on
original radial collapse of matter, there are studies that look into the
effects of angular momentum (Ryden 1988; Sikivie et al. 1997; Le
Delliou & Henriksen 2003), dynamical friction (Antonuccio-Delogu
& Colafrancesco 1994; Popolo 2009) and shears (Del Popolo et al.
2013; Pace et al. 2014). On the thermodynamics side, some research
also studies cooling and heating process during the collapse (Abadi
et al. 2000; Uchida & Yoshida 2004; McCarthy et al. 2007) for a
more realistic thermal history of structure formation.

Nowadays, studies of cosmological structure formation have en-
tered a highly advanced stage, with ever more complicated physical
processes added into increasingly sophisticated hydrodynamical sim-
ulations (e,g, Schaye et al. 2015; McCarthy et al. 2017; Springel et al.
2018), which can realistically reproduce the observed properties of
galaxies and clusters; see, e.g., Borgani & Kravtsov (2011), for a
review. Comparatively, therefore, the role of spherical collapse as a
stand-alone simulation experiment has declined. However, this sce-
nario can still be served as an useful benchmark test to access the
accuracy and reliability of new simulation codes. This explains par-
tially why the original spherical collapse model with self-similarity
still attracts attention (e.g., Halle et al. 2019; Alard 2020). It is also
worth noting that the self-similarity can still hold under some other
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circumstances, if the physics added (e.g., the cooling function) fol-
lows certain assumptions (Sikivie et al. 1997; Uchida & Yoshida
2004).

This paper concerns spherical collapse in modified gravity (MG)
models, which are an alternative solution to avoid several problems
of the current concordance ACDM cosmological model. The ACDM
model suggests that the majority of energy density in the Universe is
cold dark matter (CDM), a species of non-baryonic and non-realistic
particles, and dark energy, an energy component with exotic proper-
ties (e.g., negative pressure), in the form of a positive cosmological
constant A (Amendola & Tsujikawa 2010), which is needed to ex-
plain the accelerated Hubble expansion. However, the hypothetical
A suffers from long-standing theoretical problems (Weinberg 1989).
Modified gravity models hope to overcome those issues by extending
the standard General Relativity (GR) rather than assuming extra un-
observed components (e.g., Sotiriou & Faraoni 2010; Linder 2010).
In recent years, there has been growing interest in the MG models,
because constraining them in various astrophysical and cosmological
observations offers a powerful way to test our theory of gravity.

In this context, we want to mention that there are already various
studies which look into the spherical collapse scenarios in different
modified gravity models (e.g., Martino et al. 2009; Schmidt et al.
2010; Li & Efstathiou 2012; Lombriser et al. 2014; Barreira et al.
2014; Lopes et al. 2018; Contigiani et al. 2019). However, these stud-
ies generally focus on models that no longer uphold the property of
self-similarity. This is not surprising, because even within GR there
are strict conditions which must be satisfied to have self-similar so-
lutions. For example, the EdS model loses its self-similarity property
once a cosmological constant is added.

In this paper, we investigate the spherical collapse scenario for
collisional gas in both Einstein-de Sitter universe and a slightly mod-
ified version of the Dvali-Gabadadze-Porrati (DGP, Dvali et al. 2000)
braneworld model. The latter is a popular class of MG models that
has attracted much attention in the last two decades, featuring an
enhanced strength of the total gravitational force and the Vainshtein
screening mechanism (Vainshtein 1972) which suppresses deviations
from GR near massive objects to give the model a chance of passing
the stringent Solar System and lab constraints. Despite its complex-
ity, we find that the self-similarity property can still be achieved in
this model under certain conditions which are not unnatural. Our
self-similar solutions in this model will provide insights into how
these mechanisms of modified gravity may affect structure forma-
tion in similar, but more realistic models where self-similarity no
longer happens.

We then implement the spherical collapse scenario in a new cos-
mological hydrodynamical code, and use the above derived self-
similar solutions to assess its ability in handling simulations for dif-
ferent gravity models. Our code is based upon the publicly-available
hyperbolic partial differential equation (PDE) engine ExaHYPE
2, which implements a blockstructured adaptive mesh refinement
(AMR) (Dubey et al. 2016) Finite Volume (LeVeque 2002) code on
spacetrees (Weinzierl 2019), and is parallelised through a combina-
tion of MPI, OpenMP BSP parallelism and a task formulation (Li
etal. 2022). A comparison of the theoretical solutions and simulation
results proves the reliability of our code, and we are going to use it
to study more realistic and complicated modified gravity models in
future work.

Our paper is organised as follows: in Section 2 we briefly introduce
the DGP model, which itself does not admit any self-similar solution,
and clarify the modifications we make to it to achieve self-similarity
(§ 2.1). Then we review the self-similar solution in an Einstein-de
Sitter universe (§ 2.2.1) discovered by Bertschinger (1985). Follow-
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ing a similar approach, we derive the self-similar solution for the
modified version of the DGP model (§ 2.2.2). Our work compares
the behaviour of the solutions in this model, for several difference
parameter choices, with that of the EdS model in § 2.3. This anal-
ysis reveals some interesting features of the solutions, which will
be discussed in detail there. In Section 3 we describe our numeri-
cal code and the simulation configuration we use for the spherical
collapse scenario, paying particular attention to the implementation
details and certain tricky issues in the settings including the initial
and boundary conditions (§ 3.4). The simulation results are pre-
sented and discussed in Section 4, and finally Section 5 is devoted to
discussions and conclusions.

2 THEORIES

In this section, we introduce the physics we investigated and imple-
mented in the code.

Throughout this paper, we assume that the background cosmology
is that of the Einstein-de Sitter universe, i.e., a flat matter-dominated
background(for simplicity we assume that this still holds even in
the DGP models). It used to be the standard cosmological model
before the ACDM model replaced it in the face of growing evidence
that the cosmic expansion rate has been accelerating at late times,
and it still serves as a good approximation for the real Universe
between redshifts ~ 300 and =~ 2. The EdS universe assumes a zero
cosmological constant and flat spatial curvature, and the equation of
state of its non-relativistic matter content is P(p) = 0. With these
parameters, the evolution of the scale factor of the universe, a, can be
derived analytically from the Friedmann equation as a () = C3/3,
where ¢ is the cosmic time, C = taz/ 3 is a constant and ty is the
cosmic time today (when a = 1). This is an important assumption
we will use to derive the self-similar solution later.

2.1 The DGP gravity model

The Dvali-Gabadadze-Porrati (DGP) braneworld model is a modified
gravity model in a spacetime with an extra, fifth, dimension. The base
assumption of this model is that the universe is a four-dimensional
“brane” embedded in a five-dimensional spacetime, which is called
a “bulk”.

This model provides an explanation as why gravity is much weaker
than other fundamental forces: all matter components are assumed to
be confined on the brane, while gravitons could propagate through,
or leak into, the extra spatial dimension.

The spacetime action of the DGP model is given by
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where R is the Ricci scalar, g is the determinant of the metric tensor,
G is Newton’s constant, and the superscript () means the corre-
sponding quantities live in the five-dimensional bulk. Others without
it are normal four-dimensional quantities.

The modified Einstein equation for the DGP models can be derived
from the variation of the gravitational action Eq. (1), which further
leads to the following modified Friedmann equation that governs the
cosmic expansion history H(a):

H(a)
Hy

= \/QmOa_3 +QpEg(a) + Qe £ VQ, 2)

where Hy = H(a = 1) is the Hubble constant today (when the scale
factor is @ = 1), Q0 is the present-day density parameter of matter



(we have neglected the presence of radiation and massive neutrinos
here since they are not relevant for the interest of this work), Qpg (@)
represents the density parameter of a possible additional dark energy
species at time a, and Q¢ = 2 / (4H§r%). Here, r. is the so-called
crossover scale, which is a new free model parameter that indicates
the scale above which the gravity begins to deviate from the standard
Einsteinian:
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It is easy to see that, Eq. (2) goes back to the usual form of the
Friedmann equation when Hyr — oo.

The + in Eq. (2) shows that this model has two branches of solu-
tions. There is a “self-accelerating” branch (sDGP, the “+” branch)
that can realise an accelerated Hubble expansion at late times without
the need of a cosmological constant or dark energy, i.e., Qpg(a) = 0.
However, this branch has several unsolved theoretical issues (Koyama
2007). Additionally, its predicted cosmological history is signifi-
cantly different from that of ACDM and the observation also dis-
favours this model (e.g., Song et al. 2007).

The other branch, the so-called normal branch of DGP (nDGP)
gravity, where Eq. (2) takes the “—” sign, can not provide an ac-
celerated Hubble expansion by itself, and thus some additional dark
energy component is needed (Qpg # 0) to explain the observation.
This model has attracted much attention in recent years as it serves as
a useful testbed of the Vainshtein screening mechanism (e.g., Brax
2013), despite its unappealing property of being still in need for ad-
ditional dark energy. We will describe Vainshtein screening in more
detail below.

The (modified) Poisson equation of DGP gravity and correspond-
ing equations of the scalar field have been derived by Koyama &
Silva (2007):

3
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where @ and ¢ are the gravitational potential and the scalar field of the
model, respectively. They are also known as the brane-bending mode,
which represents the position of the brane in the fifth dimension. V
is the spatial gradient (wrt to comoving coordinates), c¢ is the speed
of light and dpm = pPm — Pm is the matter density perturbation
(throughout this paper an overbar denotes the background value of a
quantity). 3 is a time-dependent function:

H
ﬁ(a):liZHrc(1+3?), (6)
for the two branches, which for the normal branch can be simplified
as

Qmoa ™2 + 20
2\/Qrc (Qm()a_3 +Qrc)

While we are interested in the DGP model, our main focus in this
paper will be the effect of a fifth force that is mediated by the scalar
field ¢, denoted by the second term on the right-hand side of Eq. (4).
To gain flexibility and to ensure self-similarity of the resulting model
behaviour, we take the liberty to keep the main features of Eq. (5)
but allow deviations from the exact behaviour of the sDGP or nDGP
models. More explicitly, we will promote r. to a time-dependent
function, and also allow g to differ from Eq. (6). We remark that
such variations from the original DGP model are not uncommon in
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other modified gravity models involving the Vainshtein mechanism,
notably the cubic Galileon (Nicolis et al. 2009; Deffayet et al. 2009)
and the Proca (Heisenberg 2014) theories. Our modification leads to
losses of certain properties of the original DGP model, such as being
an interesting alternative to A to explain the cosmic acceleration. Yet,
the latter is not the focus on this work. In the context below, we call our
modified DGP model the Self Similar Test (SST) model to indicate
that this is a test case involving modified gravity mechanism and self
similar property. This case is designed as a toy model achieving self
similarity in an enhanced and screening gravity and is used for code
experiments of ExaHYPE2.

2.2 Self-similar behaviour in collapse of collisional gas

In this subsection, we describe the self-similar collapse of collisional
and non-radiative gas in some models. We first review the classic
result from Bertschinger (1985), which applies to standard gravity in
EdS universe. Then we proceed to show that self-similarity can also
be achieved in the SST model with Vainshtein screening. These can
be used as a test case to verify our numerical implementation with
ExaHYPE 2 for both the standard and modified gravity scenarios,
though our implementation of modified gravity is not restricted to
the SST model where self-similarity holds.

2.2.1 Einstein-de Sitter universe

Consider a uniform spherical overdensity region in the matter dom-
inated universe background. Its initial condition could be written as

1 1+6;, r> R;
p=— ’ ’ ®)
6rGt; | 1, r <R,

ti < to is the initial cosmic time for this scenario to begin,
0; = 6p/p < 1 the density contrast at #;, where p = p(¢) and
dp are respectively the mean matter density at time ¢ and the density
perturbation, and R; is the initial radius of the spherical overdensity
region. At the beginning, the Hubble flow is approximately unper-
turbed as §; < 1. Thus, we have v; = H;r; and H; = 2/(3t;). As the
universe expands, the matter inside R; starts to decelerate and decou-
ple from the Hubble flow because of the slightly higher density. At
some point it stops expanding completely (so-called “turnaround”)
and turns into a collapse. The turnaround for the mass shell at R; ini-
tially happens at a cosmic time and max radius (Bertschinger 1985)

3m 32

=0, M i = Ris7 !, )

where the subscript j;, stands for “initial turnaround”. Matter inside
the initial overdensity region starts to collapse first and all matter
there infalls at the same time. No shell crossing happens. The matter
initially in more distant shells (i.e., at initial radii r; > R;) will start
to collapse in progressively later times. The radius at which they
turn around can be calculated using the Lagrangian picture. For the
mass element initially located at r;, its evolution obeys the Newton’s
gravity law:
2

ar = —G—m. (10)
de? r2

Here m accounts all mass interior to the shell we are considering. As
no shell crossing happens during the evolution, it can be written as

3
m=m(r;) = gnpir? (1 +6i%) = gnpir?(l +A), (11)

i

MNRAS 000, 1-19 (2022)



4  H. Zhang et al.

where p; = 1/(67G tl.2) is the background density at #; for an Einstein-
de Sitter universe. It also defines A = 5iR? /rl.3. The equation (10)
then can be recast using the following dimensionless time and radius
variables, T = ¢t/t; and y = r/r;, as
d2y 2 1
— =—(1+A) —. 12
o 1+ (12)
Integrating this equation twice and using the assumption A < 1,
the solution can be expressed implicitly as (Bertschinger 1985)

= —(0—51110) AT32 = ga—32, (13)

with
50
yA = sin 3= (14)

where we have defined the variables d and n for later use. As
turnaround happens when y reaches its maximum, this yields to
0ta = m (where a subscript ; means “turnaround”). From Eq. (13)
this corresponds to a time 7 = (371/4)A‘3/2 and yu = ra/ri = A7)
Combining these two expressions with the relationship between ¢;, A
and R; given in Eq. (11), it is straightforward to derive the following
expression of the turnaround radius:

3r \ 78/ 1/3
rta(t):(Tti) 5 RSO, fort > iy, (15)

Now we switch to the fluid picture. The motion of a collisional gas
in this system is governed by the gravity-driven Euler equations:

dp 4] 0 B 1 9,

E E-FVE p=-p —26—(}’ V), (16)

dv 19p Gm

— = = - — 17

dt por 2’ an
d (pp™”) = 0 (18)
dr ’

om g, (19)

or

where p = p(r,t),v = v(r,t) and p = p(r, t) are the density, velocity
and pressure of the fluid at radius r and time t. m = m(< r) represents
the total mass within a given radius r, and y the adiabatic index. We
now use Eq. (15) and define the new radial coordinate:

r

= —, (20)
I'ta
as well as the dimensionless quantities V, D, P and M:
v(r,) = rEV(A) Q1)
p(r.t) = PHD(/U, (22)
rta\2
i = pu () PO, (23)
V¥
m(r,t) = ?pHrfaM(/l), (24)

where pyg = pg(#) is the critical density at time ¢, which is equal to
the mean matter density o, (¢) in the EAS model. These allow us to
cast Eq. (16 - 19) as the following new dimensionless fluid equations
(Bertschinger 1985):

(v-%a)p@m@z%v-w = 0, (25)
8 1 P 2M
Vo2Avi--v = - _-ZZ (2
-5y -5v = H-5w
8 \(P' D 20
2= -] = =2 27
S (E ) - B
M = 32D, (28)
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where a prime means the derivative wrt A. Those equations only
have one variable A and thus could be solved directly given proper
boundary conditions (see Section 2.3 below). No further time or
length scales are involved, which means that the solutions to the
system would remain identical throughout the evolution if expressed
in terms of the A coordinate. This is where self-similarity comes
from. Obviously, if any new terms added in Egs. (16 - 19) depend on
other scales besides A, the solution to that new system will deviate
from this self-similar solution.

2.2.2 SST model

In the spherically symmetric system, the scalar field equation (5) gets
simplified signiﬁcantly (see, e.g., Lietal. 2013):
=—§ 29
ar Pm- (29)

¢

or 38
This equation does not contain scale factor a as we use physics radius
here. We then define

w(r) = 4n / répm(r')r'zdr', (30)
0

2219
3Bc2 12 or

1
t3

rza_lpJ 8nG

where we have used /it to distinguish from m(r) introduced in
Eq. (10), since i1 does not account for the background matter density.
Eq. (29) then can be integrated once to give:

22 1 (a¢)2 de _ 2 G(r) _ 2

3pc2r \or Yo Tp 2 gN() €1y

solving which gives the radial gradient of scalar field directly as

22 1| 2212
Tc -} P i

3pc2r 3B

Bgo_
or

R —en|, (32)

where we have dropped the other branch of solution that is unphysical.
The equation could be simplified further by defining the “Vainshtein
radius” ry as follows:

5 l6r2
ry = 9B sz (ra) - (33)

Note that here we have used 7t within ri, (f) to define the Vainshtein
radius, which differs from the usual definition that only accounts for
the mass within the tophat radius — this is for convenience, because
in this way we end up with a generic expression that does not depend
on the particular size of any tophat. Now the gradient of scalar field
reads as:

dp 4 r3 i (ra) V m(r,t)
r3

ar 1 (rta)

7 = 373 A — 1] an(n). (34)

Note that d¢/dr determines the strength of the fifth force, and one
can easily see the following limiting behaviour:

R TGN 2
2
9 « 20, r<ry. (35)

or 38

If the scale of studied problem is significantly smaller than the Vain-
shtein radius 7y, the gradient of the scalar field is also much smaller
than that of the Newtonian potential, such that the fifth force is neg-
ligible compared with the standard Newtonian force. This is the idea
behind the Vainshtein screening.

Our next step is to try to recast the expression of the fifth force in



the self-similar form (which, needless to say, is not always possible)
similar to what we get above for the Einstein-de Sitter universe. This
means that we hope that the ratio between the fifth force and standard
Newtonian gravity, i.e., the coefficient in front of Eq. (34), depends
on time ¢ and radius r only through the combination r, (#). We again
define A = r/r,; note that this r, is the same as in Eq. (15)— this
is mainly for convenience, but it does mean the ¢, in this expression
is no longer the true turnaround radius in the SST model. The mass
can then be rewritten, using the definition of M (1) give in Eq. (24),
as
4

4 N
(1) = Zopury [ M) - 2| = Tpuri M (D). (36)

As mentioned above, we have removed the contribution from the
background mass as the fifth force only depends on density pertur-
bations. The Vainshtein radius now reads as
16r2 273
3 c ta

= —2M(1), 37
= gpreg (37)
so that

ry 162 2 M(1)
py

T 9R2c292 37

(33)

and
m(r,t) M(/l)
M (ra)  M(1)

These mean that

(39

ry m(rt)  16r2 2 M(Q)
r3 i (r)  9B2¢29r2 A3
To achieve the self-similarity, we need to ensure that Eq. (40) only
depends on A. The ¢ dependence of rg /212 need to be cancelled out.
However, 8 also appears in Eq. (34) in the overall factor 4/(38), and
thus should be constant over time to avoid reintroducing an explicit
t dependency. This then leads to ro o t o a3/2, with the second
proportionality true in an Einstein-de Sitter universe.

Denoting . (1) = rqo(t/tg), where ¢ is the cosmic time today and
rc0 is the value of 7. at ¢, and defining the dimensionless constant

reo _ Teo X (¢/to) _ re(t) _ 3H(rc(1) _ 3Horco

= — = , 41
¢ cty ct ct 2¢ 2¢ “h

(40)

we get

ry () 3202 M(A)
P (r) 8182 A3

Therefore, the solution can be written as

dp 218 A 22 M@Q)
o “sem |\ e o O @3

This expression shows that the fifth-force-to-Newtonian-gravity ratio
can be written in a form that only depends on A, which satisfies the
requirement of self-similarity. It is straightforward to show that the
coeflicient of gy in the above equation is always smaller than 2/(38),
which means that the Vainshtein screening always works (though not
necessarily always strong).

Let us briefly comment that, according to its definition in Eq. (41),
 is the ratio between the crossover radius r(¢) and ct. The latter can
be considered as some characterisation of the size of the Einstein-de
Sitter universe (actually it is 3cr). Therefore, the fact that this ratio is
a constant in time implies that the Vainsthein screening mechanism
is always effective on scales that correspond to a fixed fraction of

42)
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the size of the universe, and therefore it should not be surprising that
the self-similar properties of the EdS model have been preserved for
this particular choice of r.(¢). Since r characterises the length scale
beyond which gravity is modified in the SST model, we expect that
for any physically interesting scenario we need to have ¢ ~ O(1).
The choice of { = 2/3, for example, corresponds to Hyr.o/c = 1,
which leads to a similar Vainshtein screening efficiency to that for a
typical parameter choice in studies of the nDGP model for the same
value of 8.

The actual strength of the fifth force is %g—‘f, which means that
the final expression for the fifth-force-to-Newtonian-gravity ratio is

given by

_ 2B A 22 M@Q)
) = 162 0D ‘/“81[;2 ek (44)

Turning to the derivation of the self-similar equations in the SST
model, i.e., the counterparts of Egs. (25 - 28), it is evident that only
Eq. (26) needs to be modified. It is the only place where the law of
gravity enters the calculation. However, instead of simply multiplying
the —% 3’1—2 by 1+ £&(Q), the correct final version of Eq. (26) is slightly
more complicated. This is because £(1) is the ratio between the
fifth force and gy, which itself does not receive any contribution
from the background matter density, c.f., Eq. (31). On the other
hand, the term —%MZ contains contributions from the background
matter. Taking this into account leads to the following SST version
of Eq. (26):

( S)V, 1 P 2M 2M

V- AV - —V=—a—e - 2= - 224, 45
9 9 D 922 9/125() “43)

or equivalently
8 1 P 2M 2
-V -—V=-ex-==]1 A —A£(Q). 4
(v 9)v V=5 ~ g IHEQI+ 5. (6

A similar modification also appears in the SST counterpart of
Eq. (10), which now reads

L 2 1 2y
y=—§(1+A)y—2[1+§(Y,T)]+§T—2§(Y,T), 47)

where & has been defined in Eq. (44), but is now expressed in terms
of the dimensionless radius and time, y and 7. More explicitly:

278 3 3242 (1 +A
= 1+
1642 (1+A)12 —y3 8182 \ 3

£ 72—1)—1. (48)

This equation is needed for the exact solution of our equations in the
next section.

Before concluding this subsection, let us note that one limit of the
SST model arises from ¢ — 0, in which Eq. (43) approaches

T = ) 9)
and so the fifth-force-to-Newtonian-gravity ratio approximately be-
comes 1/(3p), which s the linear-regime (i.e., no screening) solution.
This corresponds to a time- and scale-independent enhancement of
Newton’s constant by a factor of 1/(3) since we are assuming 3 to
be a constant here.

2.3 Self-similar solutions

Our next step is to find the exact solution to our self-similar equations
Egs. (16 - 19): the profile of D(1), V(1), P(Q) and M(Q).

MNRAS 000, 1-19 (2022)



6 H. Zhang et al.

At the beginning stage, the spherical collapse can be described
by a pressureless infall. Outside the radius of the tophat, the inner
spherical shells infall at a greater speed than the outer shells, mean-
ing that there is no shell-crossing or squeezing. However, when the
infall speed of a given shell increases to a point where it exceeds the
sound speed ¢, of the fluid, the shell impacts upon the fluid element
inside it before there is enough time for the latter to adjust. A dis-
continuity of fluid properties, such as velocity, pressure and density,
then starts to arise there, which is known as a shock. The shock
location is our primary quantity of interest when we validate the
outcome of our simulation. We assume the shock happens at radius
rs or g = rg/r (the subscript ¢ means shock), where we can apply
the Rankine-Hugoniot jumping conditions, written in dimensionless
forms:

DyVo =D Vi +(Dy—Dy) Vs, (50)
DyV3 + Py =DV + Py +(DaVs - D1V Vs, (51)

Y P2 1 Pl 1
Dzvz(—1[7+§v22) D]Vl( le +3V;

_v, |y (P2 L) o (P L
~S|P2\y-1D, 22 "\y=1D, "2/’

Here, a subscript 1 or 2 is used to denote the preshock and postshock
values of a quantity, respectively, and Vs is the dimensionless speed
of the shock position itself. Physically, the three jumping conditions
represent the continuity of mass, momentum and energy across the
shock.

One can analytically calculate the preshock solutions in terms of
As using Eq. (12) and its solutions, Eqgs. (13, 14) for A < 1:

(52)

dzn—3
D = 35 53
! 1+3ys >3)
Py = 0, 549
v, = A sin 6 (05 — sinzes) (55)
(1 =cosfy)
My, = Bdn3. (56)
2 6,

where 05 = 0 (75), s = sin” 5+ = ysA, 0l3 = 4(GS — sin fy) are the
values of 7 and d at 6, and, ys = 1 - 2 /l . Combining Egs. (50 -
56), we get the boundary condition for the “other side (post side) of

the shock:

1
p, = fop, 57)
y—1
8 y-1 8
Ve = a4+t |vi-2a), 58
2 9S+7+1(1 9 Y) (58)
2 8 \?
P, = ——_ S
2 v 1 (V1 9/13) , (59)
My = M. (60)

The entire postshock solution can then be obtained by numerically
integrating Eqs. (25 - 28) inwards from A = A, using these boundary
conditions. However, since A is not known a priori, this is a trial and
error process where the value of Ay is updated iteratively until when
the corresponding solutions meet the following physical boundary
conditions in the centre of the system:

V(1=0)=M1=0)=0 (61)

This is how Bertschinger (1985) got his self-similar solution and we
plot our reproduced result here in Figure 1.

While the use of the 8 variable to write the solution to Eq. (12) in
the implicit forms of Egs. (13, 14) is convenient, this is impossible for
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the SST model where the corresponding spherical collapse equation
takes a more complicated form. However, the introduction of 6 in
the EdS model is largely a matter of choice for convenience, and the
same physics can be produced using 7 as well. Because this is what
we shall use for the SST model, we decide to also use 7 instead of
6 to obtain the numerical self-similar solutions for the EdS model.
This means that we need to express the preshock solutions to D, P,V
and M at 7. For the velocity, using its definition

TP SRR SV
W T e
we obtain
Vi (/ls) = ( ))’s, (62)

where an overdot denotes the derivative wrt 7, and yg = y (75). For
M, using

M= Z&wi)U+M
§pHrt3a PH \Tta
we have
8/3
3r 1+A 53
My(Ag) = (T) — B (63)
For D, using
8/3
_2(3x 1+A _-5/3
3/120(/1)=dM/dT= 3(4) AL
da/dr 8/9 B . g y(®) ’
() )
we have
2 1+A
Di(As) = _§Tsﬁ (64)
Vs (yY -9 ‘r:)
For P, we have Py = 0 again.

The following steps are the same as before. We can use the Rank-
ine—Hugoniot jumping conditions to obtain D;, P>, V, and M, and
numerically integrate the equations again to find the postshock so-
Iutions. This time we need to vary 7 for our trial-and-error process
after A is specified. ys and y can be calculated numerically from 7
by using Eq. (10) for the EdS model and Eq. (47) for the SST model.
For EdS, we have explicitly checked that using the 7-based approach
to set up the boundary conditions for the postshock solutions gives
identical answer as using Eqgs. (53 - 56), as expected.

We summarise our result for self-similar solutions in SST gravity
with in Figure 1. The black curves in the figure are the self-similar
solutions to D, P,V and M for the EdS model, which we find to
be in excellent agreement with literature results (e.g., Bertschinger
1985). The coloured curves show the results for several variants
of the SST model described in Section 2.2.2, with the case { = 0
(red) corresponding to a constant enhancement of G by 1/(38). The
cases with ¢ = 1, 5 and 10 represent progressively more efficient
Vainshtein screening, which explains why they are in between the
EdS and ¢ = O cases. In particular, we see that at { = 10 the screening
is already very efficient so that the brown curves are very close to
EdS. The qualitative trend also agrees with what one should expect
for a model with enhanced gravity: the infall becomes faster such
that the preshock solution of V becomes more negative and the shock
happens at larger radius; the density D and pressure P are also higher
due to the stronger structure formation, and the latter explains why
the enclosed mass M within a given radius is larger.

The SST results in Figure 1 are obtained with the parameter A =
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Figure 1. (Colour Online) Self-similar solution for gravity in Einstein-de Sitter universe and SST models with different £ choices. Rescaled D (), P(1), V (),
M () are plotted. The value of £ indicates the strength of the Vainshtein screening. It gets more efficient when ¢ gets bigger. The case ¢ = 0 means there is no
screening, i.e., The modification of SST are equivalent to a constant enhancement of gravity all the time. All curves here are obtained by using A = 0.001.

0.001. The A dependence of the solution, which we have explicitly
checked, can already be seen at the equation level, cf. Egs. (62-64),
and also in Fig. 2, where we show the two sets of self-similar solutions
for two models, EdS (dashed lines) and SST with 8 = 1.0, ¢ = 1 (solid
lines). Different colours indicates the value of A for each curve, as
shown by the legends. We can see that the SST model has a very
strong A dependence. A similar dependence is also present in the
EdS case, but is much weaker there — indeed, it is known that in
EdS there is approximately no A dependence in the limit A <« 1
(Bertschinger 1985). This A dependence comes from our choice of
using the turnaround radius r¢ (1), given in Eq. (15), to define the
dimensionless coordinate A, where rt, itself depends on A. For the
EdS model, rescaling r using this turnaround radius helps to cancel
out the A dependence from Eq. (12), because this r, is calculated
from the same dynamical equation and has the physical meaning of
where the shell start to collapse. But such a cancellation should not
be expected to happen when we use the same Eq. (15) to define A
for the SST (and generally other gravity) models, since it does not
represent the true turnaround radius anymore.

Using the same r, to define A in all models above certainly has its
advantages. One of these is that Eq. (15) is an analytical function with

a power-law dependence on 7, which is convenient when deriving
the dimensionless equations governing the self-similar evolution. It
also allows these equations to take the similar form between the SST
and EdS models. For example, Eq. (25-28) remain almost the same
for the SST model, with only some slight changes of Eq. (26) to
Eq. (46). In addition, Figure 1 clearly shows the effect of modified
gravity law on the collapse of collisional gas and on the formation
of shock: this also benefits from the fact that we have used the same
‘turnaround’ radius, ri,(7), to define the rescaled quantities in all
models, so that the differences in the rescaled quantities reflect the
differences in the same quantities pre-rescaling. Nevertheless, for
theoretical interest, we also want to see the results when we actually
define A using the true turnaround radius of each model. Because
there are no analytical expressions for r¢, for the SST model, this
has to be done in a “post-processing” way: after getting the profile
V(2) by following the above steps, we can obtain the real turnaround
radius in the preshock V(1) solution, by looking for the value of Ay,
where V(1{,) crosses 0; we then get the correct turnaround radius as:

!’
Ty = (A—I) Tta = Qria, (65)
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Figure 2. (Colour Online) Two sets of the self-similar solutions are presented here, with the dashed lines for standard gravity in EdS and solid lines for SST
model of B = 1.0, ¢ = 1. Different choices of A are indicated by colours. The A dependence in EdS case is negligible as the solutions assume the limit A < 1
(Bertschinger 1985). On the other hand, the results for SST model shows a clear dependence on A, which we explain in the text.

and use r/, to rescale our solutions for the other quantities, which is
equivalent to performing the following ‘re-rescaling’:

1 - ol

D — D,

P — a 2P,

vV — ol V,
M - a3M. (66)

The new result is summarised in Figure 3. While we only show
the results obtained by using A = 0.001 here, we find that using
A = 0.01, 0.1, 0.2 give very similar results. One notable property
is that the new rescaled profiles are very close to that in Einstein-
de Sitter universe, i.e., the SST model behaves similarly to standard
gravity if expressed in terms of the A coordinate which is defined
using the true turnaround radius of the model. As the real physical
evolutions of these models are very different, this similarity is quite
interesting, since it suggests that self-similarity works (at least to a
good approximation) in more general models than just EdS.

As we shall see below, this “re-rescaling” idea using the true
turnaround radius can also be applied to the numerical simulation
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result from ExaHYPE 2, and help to check its reliability on handling
this scenario.

3 NUMERICAL SIMULATIONS WITH ExaHYPE 2

In this section, we first introduce the numerical code we implement on
ExaHYPE 2, then describe how we configure the spherical collapse
scenario with it.

Our simulations are based upon an adaptive Cartesian mesh host-
ing a Finite Volume discretisation with an explicit Euler. The code
is realised through ExaHYPE, which is a publicly available engine
designed for generic hyperbolic PDEs that arise in different branches
of sciences and engineering. We rely on the second-generation Ex-
AHYPE 2 code which is a rewrite that has been used for astrophysical
challenges before (e.g., Reinarz et al. 2020).

3.1 Spatial and temporal discretisation

ExaHYPE 2 constructs the spatial discretisation from a spacetree
formalism (Weinzierl 2019) combined with block-structured adap-
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Figure 3. (Colour Online) The new self-similar solutions of SST models with the same £ choices as in previous figures, after the 're-rescaling’. Those curves

now has little dependence on A, and behave closely to the EdS cases.

tive mesh refinement (AMR; Dubey et al. 2016): The computational
domain is embedded in a cube and split into three equal parts along
each coordinate axis. This yields 33 = 27 smaller cubes. We con-
tinue recursively, i.e., decide for each cube whether to cut it into 27
subcubes again. The refinement decision or criterion is subject of
discussion below. The process yields an adaptive refined Cartesian
mesh. Starting from an initial adaptive mesh, dynamic adaptivity
could be realised by applying the splitting in between time steps to
yield a finer mesh.

Each cube hosts a px p X p Cartesian mesh. We call these Cartesian
meshes patches and make them carry the actual solution represen-
tation: each mesh element in the patch holds a piecewise constant
solution of the governing equations, i.e., defines one “finite volume”.
Every patch thus consist of p? volumes. The patch of volumes is
augmented with a “halo! layer” of width one around it. The patches
hence yield a non-overlapping domain decomposition of the com-

1 Note that the word ‘halo’ here is a technical term indicating an extra layer
of volumes surrounding each patch, and differs from its usual meaning in
cosmology, e.g., dark matter haloes.

putational domain, while the haloes introduce an overlap between
them.

Let the vector é : R? xR* + R denote the unknowns of interest
as they evolve over time, where the symbol ~ highlights that this is a
data (rather than space) vector that in our case has a dimensionality
of 5. We approximate the time derivatives with forward finite differ-

dé N Qnew_éold

. . . . . QO]d
ences, i.e., 7= & 5T with a given time step size 67 and Q°',

é“ew representing the values of é at the start and end of the time
step. Our equations are a set of generic first-order hyperbolic PDEs

9 v F()=500)

a (67)

where F (é) and S (é) are the flux and source term, respectively. Here
we have used bold symbols to denote space vectors to distinguish
them from the notation for data vectors introduced above. The generic
first-order hyperbolic PDEs can be written in a weak formulation for
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one timestep as

/ 99 axar = - / V. F(Q)ydxdr
ox[T,T+6T] 4t QX [T, T+6T]

+ / S(Q)ydxds, (68)
QX[T,T+6T]

where dx runs over the domain Q, [T,T + 6T] denotes the time
interval and y(x,t) is a test function. Eq. (68) needs to hold for
arbitrary y to fulfil Eq. (67).

In ExaHYPE 2, we adopt the Rusanov Finite Volume solver (LeV-
eque 2002) to solve the Riemann problem that arises once we assume
that the solution remains constant within every timestep and every
volume v, and set all test function as characteristic function of one fi-
nite volume, i.e., they are yy (x,¢) = 1 within v and vanish anywhere
else. The integration of Eq. (68) over time gives us

% [ |6 +o1) - 01

[ax[-v-r(0) +s(am)]

/VS(Q(T))dx - fgv F(T) - dS, (69)

where dS is the (oriented) area element of the surface of the vol-
ume v, dv. Here the closed-surface integration is decomposed into
the summation of multiple faces that have constant normal vector
respectively. At the same time, we assume the solution vector Q to
be piece-wise constant, so we apply the following replacement:

dex—>OVV, f{ O-dS— > O-nSsy, (70)
v v v

where V), is the volume of v, Sy,,, n are the area and unit normal
vector of one face of dv, respectively, and O (Q) denotes a generic
scalar (space vector) function. This leads to final explicit Euler time
stepping scheme we implemented in the code:

Vo O(T+6T) = O(T) = SOV, + ) Fux* ()|, TSa, (71
ov v
with the so-called Rusanov flux (Rusanov 1961):
.2 1 > =
Fux), = 5 (Fa(G")+Fa(0))
—max (/lmax(é+), /lmax(é_)) <é+ - é_)72)

Fy, is the flux term evaluated along n of the considered dv for the
respective volume. Flux® (é) in Eq. (72) averages component-wisely
over the flux within the two adjacent volumes. The average then is
corrected (limited): Amax is the largest eigenvalue of the matrix A(é)
acting on the gradient along n if we write down the PDE along the
face normal as

do 5, d0

— AQ)— =... 73
T tAO G @3
It indicates the largest propagating speed of the quantities in the
system.

We close this subsection by briefly commenting that 67 is subject
to the Courant—Friedrichs—Lewy (CFL) condition with

o < c 12 (74)

max

where C < 1 is a problem-specified safety parameter. Our scheme
employs a global time stepping scheme and thus uses the smallest
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Figure 4. (colour online) A two-dimensional cut through one quadrant of the
computational mesh. The colours represent subdomains handled by different
threads of different ranks. As the illustration is a cut-through, the space-filling
curve structure is not visible directly.

global face length |6v|. It remains invariant over time as we fix the
finest resolution in our simulations. The maximum eigenvalue Amax,
however, changes over time and thus has to be recalculated after each
step.

3.2 Implementation

Our code splits up the computational domain along the Peano space-
filling curve (SFC) into subdomains (Li et al. 2022; Weinzierl 2019)
(Fig. 4): All patches are ordered along the SFC. We cut this sequence
of patches into segments such that each rank gets exactly one segment
hosting roughly the same number of patches. As the Peano SFC is
continuous, the set of patches per rank form a connected subdomain
of the computational domain which does not overlap with any subdo-
main handled on another rank. Per rank, we apply the SFC splitting
once more such that each thread per rank obtains its own subdomain:
The patches within the computational domain are first distributed
among the ranks and each rank then distributes its patches once
more among the threads. This gives us a two-level non-overlapping
MPI+OpenMP parallelisation.

Our realisation with patches supplemented with a halo of width
one allows each thread to run through the mesh, and to update all of
its patches independently of the other ones. After this mesh traversal,
the halo layers are copied over for neighbouring patches of the same
size, halo finite volumes overlapping with coarser resolution patches
are updated due to a linear interpolation, while halo volumes over-
lapping with finer resolutions are updated through averaging over
the finer volumes. We map the individual patch updates per thread
onto a task formalism (Li et al. 2022) and process the patches along
the MPI boundaries prior to other tasks such that the data transfer
required for the halo updates can overlap with further computations
(Charrier et al. 2020). We assume that the tasks can compensate for
any geometric ill-balancing on the MPI level. We do not dynamically
rebalance throughout the computation.

In our experiments, we use four nodes of Durham’s COSMA 7
cluster with one MPI rank per compute node. Each node hosts a dual-



socket Intel Gold 5120 CPU processor. Therefore, each rank splits
up its domain into 28 further subdomains. Our experiments stick to
p = 3. While this setup yields a relatively low arithmetic load per
patch compared to the overhead that we need to maintain the halo
volumes, it ensures that we can use a rather aggressive coarsening
towards the domain boundaries to reduce the overall computational
burden.

3.3 Code Units

To solve the system of equations numerically, it is usually convenient
to recast them by using dimensionless quantities. In the ExaAHYPE 2
implementation, we adopt the so-called supercomoving coordinates,
which are used in other simulation codes such as Ramses (Teyssier
2002).

The original formulation of this coordinate system could be found
in Martel & Shapiro (1998). Its idea is to apply the following rescaling
of the variables:

- dr
di = Hy—,
0a2
B 1x
X = —-=,
al
. _ apx,) p(x,1)
p = a = —=,
Qmope Pm (1)
ioe d— P
QuopcHGL?
u
i = —_— 75
i aHOL (75)

Here p¢, pm(t) are respectively the critical density today and mean
density of matter at time #; L is the comoving size of unit code length;
dt, x and u denote, respectively, the (physical) time interval, physical
coordinate and peculiar velocity. We use the quantities with a tilde in
our code, we therefore call them code unit in the following context.

The supercomoving coordinate system factors out most of the
effect from the Hubble expansion, and thus allows us to implement
the original fluid equations Eq. (16-19) in a static space with just
minor changes. For the special case y = 5/3, the only change of
the fluid equations is a re-calibration of the gravity term in Eq. (17),
which now needs to be derived from the following code-unit Poisson
equation:

eh~ 3 _
V2d = 2 Quoa(p~ 1), (76)

where ® is the Newtonian potential in code unit
a’®

oL
2152
LHO

amn
Solving Eq. (76) under spherical symmetry gives us the following
solution of the Newtonian gravitational force § = —d®/d7 (again, in
code unit):

.3 1, oy 3 1 6M(<F)
g——2Qmoaf2/0 [p(r)—l]r dr :_ZQmOaFZ P

(78)

where we have defined §M (< 7) to be the total “mass perturbation”
within radius 7, i.e., the difference between the total mass therein and
the mass in the same region were the density there equal to pp,. For
other fluid equations, we only need to replace physical quantities with
code quantities directly. For cases y # 5/3, extra terms are needed
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for supercomoving coordinates (although they are straightforward to
derive), which we do not cover here.

The generalisation to calculate the modified gravitational force
in the SST model is straightforward: we multiply the fifth-force-to-
Newtonian-gravity ratio & given in Eq. (48) to Eq. (78) directly to
obtain the fifth force in the SST model. Most terms in Eq. (48) are
constants or time-dependent functions, and the only term that needs
to be rewritten in code unit is
Epird (1+4) , m(risti) o

2
2o 3P T PR (79)
Zpird Zpird

1+A
3

where we recall that r; is the initial radius of the fluid element located
at r at time ¢, and m (r;, ;) is the total mass enclosed within r; at the
initial time #;. As no shell crossing happens during the evolution, the
mass within the radius of this fluid element remains the same, which
means:

1+A
—‘rz—

“l(< r,l) 2
3 — T s
y

1= 1, (80)

Zpir3
where m(< r,t) denotes the total mass enclosed in radius r at
time ¢ > ¢;. In our code implementation, the mass is calculated
by counting volumes (see Section 3.4 below), and thus m(< r,t) =
Zr<r pr()€3, where the subscript k labels the volumes, ¢ is the
cubic size of volumes k, and py(¢) is the density (all in physical
units). Notice that we have:
Pk (1) Prpu(t) _ prpu(n) _ .

= s = Pk @81)
pi piT pH(1)
in the Einstein-de Sitter universe. Putting Eq. (81) back to Eq. (80),
we get

144 5 | _ Zne<r prly | Zner (P DG sM(< )

)3 473 4n,3 43

>

(82)

where in the second equality we have used 4?” 3= Zr<r {’i, while
in the final equality we have replaced ¢} and r with their code-unit
expressions, £ and 7, which does not change the ratio [i /r3, and used
SM(<7) = 2 <i (P —=1) fi Eq. (82) is the final code expression
that we use in our simulation.

3.4 Simulation Settings

In this subsection, we discuss how we implement the spherical col-
lapse scenario on ExaHYPE 2. We describe the hyperbolic equations
and grid setting that are used in the simulations, the initial conditions
and boundary conditions, and how we calculate the total perturbed
mass, §M (< 7), at arbitrary radius 7.

3.4.1 Equations and Grid setting

In the simulations, we implemented the original conservation form
of the (gravity-driven) Euler equations in code unit:

ap .
L 4v.-j7 = 0, 83
6t+ J (83)
aJ 1~ - -
—J~+V‘(7j®j+ﬁl) - 7 (84)
ot o)
OE 1o ~ 1. -
7+V‘(71(E+P)) = —j-f (85)
7 p p
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Figure 5. (Colour Online) Left Panel: The adaptive Cartesian grid used in our simulations, with patches and volumes that we describe in Section 3.1 therein.
The patches with p = 3 (i.e., every patch contains 3% volumes) are separated from each other in the visualisation with gaps for clarity. Three levels of the grid
are shown here. Only one quarter of x-y plane taken from a slice of the simulation box perpendicular to the z-axis is plotted. The diagonal lines are visualisation
artefacts as we use the cubic finite volumes. The refinement transitions are conservative, i.e., they are slightly larger than the resolution transitions imposed by
the refinement strategy. Right Panel: The density field (in code unit) on the same slice for a snapshot during a simulation. Some fluctuations of the density field

could be seen out of the central peak, as we discuss them in Section 3.4.3.

where g, j, E, p represent the density of mass, momentum, energy
and pressure in code unit respectively, f = g is the force density
with & the gravitational acceleration, which is proportional to § M (<
7)/72. We consequently obtain Q = (p, J, E) in Eq. (67).

All simulations we presented in this paper use the same grid setup
on a cubic box [—1.5,1.5]3. The maximum refinement level within
the tree formalism is 3, corresponding to a resolution of 2433 patches
on the finest level. Every patches contains 27 volumes again (p = 3).
We coarsen this mesh once at a distance of 0.5 (in code units) away
from the origin, and coarsen it once more at 0.7. Figure 5 illustrates
the AMR refinement pattern we used for the simulation. The exact
refinement pattern is chosen such that it covers the refinement radii.
The safety parameter (CFL ratio) we use in Eq. (74) is C = 0.3.

3.4.2 Initial Conditions

The simulations shown in this paper start at scale factor a; = 0.001,
and end around a = 0.3. The simulation domain is initially filled with
collisional cold gas of y = 5/3 in critical density (which is unity in
code units). Our overdense seed, the spherical tophat, is placed at the
origin and is set to have a radius R; = 0.05 and total perturbed mass
SM; =0.15.

The treatment of the initial conditions of the pressure, density and
velocity is subtle. Although we should expect a pressureless infall for
most regions in the simulation box at the beginning, we can not set a
zero initial pressure numerically. Likewise, although it seems to be
quite natural to set a zero initial velocity profile within our comoving
coordinate system, we can not do this in our implementation, neither.
Both of these would lead to a negative pressure in the first time step.
This is because in this step the energy equation, Eq. (85), does not
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update the local energy given the zero momentum (i.e., both the flux
and the source terms are zero in this equation). On the other hand,
the momentum itself is updated normally according to Eq. (84) as
its source term (the force density) is nonzero. Since we calculate the
pressure using:

p=(-1 (E— %?/ﬁ), (86)

the fact that j is updated (mostly increased in magnitude) while £ is
not during the first step can cause an accidental and unphysical drop
of pressure at the end of this timestep, and frequently (for zero initial
pressure, it is always) the pressure turns to be negative where gravity
is strong, i.e., near the centre. This issue would be worse if we put a
point mass as the overdense seed at the centre, like the one in RAMSES
(Teyssier 2002), because it leads to an extremely large magnitude of
the gravity force in the adjacent volumes of the point mass.

To address this negative pressure issue, our solution is three-fold.
Firstly, we stick to using a tophat overdensity rather than a point mass
as our seed, though it harms the solution partially (see the section for
results below). A tophat initial profile smooths the gravity field and
reduces the magnitude of a potential negative pressure. Secondly, we
set a very small but non-zero value for the pressure initially: it makes
the system more robust to the pressure drop in the first time step, and
can quickly converge to the correct pressureless solution outside the
shock later in the simulation. Finally, we introduce a pre-set initial
velocity profile. We assume our momentum field has evolved a small
period of (physical) time before the simulation begins, according to
the initial gravity field:

Ji=0Mgi 87)

such that the energy can get updated as well. These adaptions suc-



cessfully solve the initial negative pressure issue without the explicit
construction of consistent initial condition which does not yield un-
physical solutions. The freedom of adjusting our initial conditions
without harming the final self-similarity is expected given the con-
vergence of the solution (Alard 2020), and we have explicitly checked
that it is true for our simulation by tuning our initial pressure.

3.4.3 Boundary Conditions and Geometric Setup

Our setup to simulate spherical collapses requires free inflow bound-
ary conditions. Because we expect é to be almost stationary in
comoving coordinates (or approaching the Hubble flow physically)
as we move away from the centre of the computational domain, ho-
mogeneous Neumann boundary conditions can yield the free inflow
as long as the computational domain is sufficiently large. However,
such a large domain is computationally inefficient or even unfeasible,
and it is also not clear whether ‘large’ is well-defined in an evolving
system: the shock propagates outwards towards the border over time,
thus making it a challenge to use homogeneous Neumann bound-
ary conditions throughout the entire evolution. We therefore use the
following hybrid scheme:

Oins Pin < 1 (88)

Qout = Oin + - li%lgv(l)é(x)’ otherwise, (89)
X—

where Qin and Qout denote, respectively, the solution vectors in the
volumes on the inner and outer sides of the boundary (see Fig. 6). The
boundary conditions in ExAHYPE 2 are implemented by specifying
how the quantities in ghost volumes out of the boundary éout are
calculated from ones in their direct neighbours within the domain
Qin~ In most times, we use the extrapolating boundary condition
Eq. (89), where the superscript () means we use the first-order
approximation of the gradient Vé at x approaching the domain
boundary 9L, multiplied by the distance between the two volumes,
lin.

The different behaviours of these two types of boundary conditions
are illustrated in Fig. 7. The linearly extrapolated boundary condition
is more accurate than the homogeneous Neumann one specified by
Eq. (88), but it underestimates the momentum inflow from beyond
the boundary. As a result, the code-unit density at the boundary,
Pin» Will drop to under unity later in the evolution: this is unphysi-
cal because the density everywhere in this collapse scenario should
be above the critical density. Whenever this happens, we switch to
the homogeneous Neumann boundary condition, Eq. (88). The latter
usually overestimates the inflow, and thus can provide some ‘com-
pensation’. After the density pj, increases back to above unity, we
continue using the extrapolating boundary condition again.

The Finite Volume scheme uses normal boundary conditions
where the normal is axis-aligned. However, our solution is spherical-
symmetric. The boundary condition’s normal alignment thus is er-
roneous. Even with Egs. (88-89), we have to ensure that the domain
remains sufficiently large compared to the area of interest, such that
this misalignment becomes negligible. Our box size is chosen based
on this consideration. Though the shock only reaches a radius of
around 0.5 code units in the final stage of the simulation, we set the
radius of the box to be as large as 1.5 units to suppress any boundary
pollution. We do not enlarge our box any further as it consumes too
much computing resources in regions of little interest. Despite the
large computational domain, the finite domain size still limits the
maximum simulation time up to which our results are not distorted
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Boundary

Figure 6. (Colour Online) An illustration of the boundary layout used in
our simulations with EXAHYPE 2. Outside the boundary of the simulation
domain, denoted by the thin black line, a layer of ghost volumes (blue squares)
are set up, and the interested quantities in the ghost volumes, Qout, depend
only on the values of these quantities, as well as their first derivatives, in
the volumes immediately inside the boundary (dark red squares), Qin. See
Eqgs. (88, 89) for the exact details.

significantly by the tangential boundary errors, as the solution’s steep
gradient moves towards the domain boundary.

Similar arguments hold along resolution transitions. As we inter-
polate linearly along the resolution boundary, our solutions do not
follow exact spherical symmetry: the mesh and its resolution transi-
tions should be spherical, and we should interpolate linearly along a
spherical transition. Yet, our grid is Cartesian. This “misalignment”
results in fluctuations or finger patterns (Fig. 5, right panel). Our code
has two ingredients to mitigate the resulting error: on the one hand,
we use 2:1 balancing (Sundar et al. 2008), since a more aggressive
resolution change would amplify any error. On the other hand, we
ensure that the “first” (finest to second finest) resolution transition
is sufficiently far away from the region of interest, i.e. the shock. In
return, this implies that the maximum runtime yielding physically
admissible results is bounded further, as long as we disable adaptive
mesh refinement—a technique which is intrinsically limited, as the
area of interest expands and thus eventually yields a regular grid with
excessive memory footprint. This numerical error becomes apparent
once the shock approaches the resolution transition boundary. In our
simulation, we extend the first transition boundary to about 0.6 code
units. This is slightly larger than the final 0.5 code units which the
shock reaches within code time 60 (corresponds to a =~ 0.3). At
that time, the shock approaches the transition boundary and thus the
numerical error starts to pollute the solutions. As we will see in the
result section below, the simulation already reaches the numerical
convergence before a ~ 0.02, so the current setup provides sufficient
time for us to test the code in the stable evolution stage.

3.4.4 Mass Integration

Most of the terms in Egs. (83-85) can be implemented in ExAHYPE
2 directly as part of the Rusanov scheme on Cartesian meshes we
describe above, because they are all localised variables, i.e. follow
up the update pattern of any Finite Volume scheme. However, the
gravitational force

SM(< 7)

(148, (90)

is not localised as we will need the total perturbed mass within radius
7. To get M (< 7), we construct a mass array {61 }o<i <y Which
stores the total perturbed mass values within radii {7; }o<; <i,,,, - Here
Pmax = Fi=i,,, 15 chosen to be the radius of the largest sphere in the

~ . 3 B
Ifl=pgl = EQmpa
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Figure 7. (Colour Online) The different ways to set up the boundary conditions in the velocity field at the boundary of the simulation domain, indicated by the
vertical dashed line. In both panels, the blue curve illustrates a physical velocity profile along the x direction, which has a nonzero gradient at the boundary.
Left panel: the homogeneous Neumann boundary condition specified by Eq. (88), where the velocity field outside the boundary (i.e., to the right of the vertical
line) is assumed to be a constant equal to the velocity value just inside the boundary (the red dashed line). In this case, the inflow from beyond the boundary is
overestimated, and thus harms the quality of the boundary. Right panel: The first-order extrapolated boundary condition corresponding to Eq. (89), as indicated
by the green dashed line. Its prediction of inflow is more accurate than the Neumann case but is underestimated. We combine these two boundary conditions in

our simulations depending on the local density at the boundary.

simulation box: half of the domain length. The values of 671; are
calculated by accumulating the mass in all volumes that are within
7; per time step:

smi(< 7ty = Y [pk(n) =118, o1

i <P

where £} is the size of the accumulating volume. The plain sum-
mation is consistent with our choice of piece-wise constant Finite
Volumes. During the subsequent time step, we apply the following
interpolation rule per volume according to its radius 7 for the required
perturbed mass:

81 73, F <7
_ = Fia—F . F—F; - -
SM(< 7) =1 0y (,::1‘—_,,) + 00y (;M_’;i), Fi <r ST

OMmax + %ﬁ(fmax) (f3 - frsnax . F> Fmax

92)

The perturbed masses for volumes outside 7pax are approximated
by assuming that the density there is equal to that at #pax. During
our simulations, the densities in those volumes depart little from
unity and thus contribute little to the total perturbed mass. This
approximation is therefore acceptable. More accurate schemes could
be used in future simulations, such as using a scheme of density
interpolation that can extend to the furthest corner of the simulation
box. Within #pax, on the other hand, the accuracy of this interpolation
rule depends on the size and arrangement of the sample array {677; }.
In our simulations, we use a sample array size of 200, and keep our
sample radii {7;} invariant over time.

4 SIMULATION RESULTS

In this section, we report the simulation results of spherical collapse
scenarios in different gravity models using our new code. To make
comparison to the theoretical predictions we got in Section 2, we will
also show results that are rescaled following Eqs. (21-24), after we
restored the quantities in physical unit using Eq. (75).
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4.1 Einstein-de Sitter universe

We first show the simulation results in the Einstein-de Sitter universe.
Since gravity is standard, we can use Eq. (15) as the scaling radius.
The rescaled profiles of physics quantities are plotted over the radius
coordinates in the code unit (supercomoving coordinates), in Fig. 8.
We illustrate five snapshots of the system (at scale factor a ~ 0.022,
0.031,0.047, 0.076, 0.145) from the late part of the simulation when
the corresponding A is relatively small. The system remains in stable
evolution before the numerical issues we reported in the last section
pollute the solution. A clear outward-propagating shock can be seen
in the figure.

The same profiles of quantities are plotted again, but now against
the rescaled radial coordinates A, in Fig. 9. The theoretical self-similar
lines from Section 2 are shown as black dashed lines for comparison.
We can see a clear self-similarity here, as the rescaled simulated
quantities have converged during the time period considered, when
the scale factor a increases by a factor of seven. The coloured vertical
lines in the figures are the positions of the tophat edge at the time of
the corresponding snapshots, within which the density and pressure
solution deviate from the self-similar solution and flatten: this is
expected as the gas within the tophat does not experience the full
gravity from the mass perturbation anymore. The radius of this edge
is shrinking in the rescaled plots over time because the turnaround
radius that is used to define A increases as time evolves.

The rescaled solutions agree with the theoretical predictions quite
well, especially for the preshock solutions of the density and velocity.
Yet, there are some deviations from the self-similar solution, notably
a shift of the shock position. Because of this, the infall velocity of
the gas just outside the shock is lower than the theoretical prediction.
This is a common numerical artefact caused by volumes with finite
widths, which cannot exactly resolve the infinitesimally thin shock.
We have checked that the agreement with the self-similar prediction
improves as we use finer volumes. A detailed convergence study is
beyond scope here.

Another factor that may have contributed to the difference between
theory and simulation is that the theoretical solution here is obtained
under the assumption of A < 1, and this is not well satisfied in the
simulations. The different shells of gas have different initial radii r;
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Figure 8. (Colour Online) The rescaled density, velocity and pressure profiles for spherical collapse in an Einstein-de Sitter universe, plotted against the radius
from the centre in code units. Five snapshots of the system at a = 0.022, 0.031, 0.047, 0.076, 0.145 are shown in different colours as indicated by the legends.
An outward-propagating shock is clearly visible in all three panels. The curves are sampled over the positive direction of the x axis, but we have checked that for
all the simulations we report in this section the solution only has a very weak dependence on the direction along which we extract it from the simulation domain,

see Appendix A.

and corresponding values of A, with the outer shells having larger r;
and therefore smaller A, and vice versa. The outer shells also collapse
to the shock at a later time. We note that the outer shells that collapse
to the shock at later stages of the simulations usually have A = 0.1,
and the inner shells have even larger A. The difference between these
values of A < 1 might affect the accuracy of the simulation results.
This claim is supported by the time convergence of the profiles in
Figure 9 toward the self-similar solutions. However, it is not clear to
what extent letting the simulation run for longer, so that shells with
ever larger r; will fall to the shock, helps here, since some of the
inaccuracy of the simulation results is due to numerical dissipation.
Additionally, as we explained in Section 3.4.3, the maximum runtime
yielding physically admissible results is bounded, and simulations
after a longer time will begin to depart from the self-similar solution
generally.

We next study the effect of hybrid boundary condition scheme in-
troduced in Section 3.4.3. Figure 10 gives the tail part of the density
profiles of three simulations which are identical except for the imple-
mentations of the boundary conditions. The three panels correspond
to the three types of boundary conditions mentioned above, respec-
tively homogeneous Neumann (outflow), pure linear extrapolation
and the hybrid scheme. A clear abnormal uprising of density near
the boundary can be seen in the homogeneous case (the first panel),
as it overestimates the inflow from beyond the boundary. This effect
would “propagate” inwards and eventually pollute the solution, mak-
ing it unstable. On the other hand, the density drops to under unity (or
the critical density in physical units) when we use the extrapolated
boundary condition (the second panel), leading to a negative density
later in the simulation. By using the hybrid scheme (the third panel),
we manage to keep a relatively stable and smooth density evolution
near the boundary throughout the simulation.

4.2 SST models

In this subsection we report the simulation results of the SST model
introduced in Sections 2.1 and 2.2.2, with 8 = 1.0 and various

values of the screening parameter . For a clear comparison with the
standard gravity, we first rescale our modified gravity results using
the same turnaround radius formulation Eq. (15), following what
we did first in Section 2.3. As the rescaling radius is identical in
the different gravity models, the differences after the rescaling also
represent the difference in the real evolution, thus showing the effects
of modified gravity and the screening mechanism.

The results at a = 0.076 for models with 8 =1.0and { =0, 1, 5,
10, 50, 100 are summarised in Figure 11. Those results agree with
what one should expect for an enhanced gravity force and presence
of screening: for the non-screening case ({ = 0), in which gravity is
constantly enhanced in time and space, a stronger shock is observed
and it also happens at a larger radius than in EdS. In the other cases,
as the screening becomes stronger and stronger (i.e., increasing ),
the results approach that of standard gravity in an EdS universe.

One may have noticed that we require a bigger ¢ to achieve a similar
screening effect, compared to Figure 1. This is mainly due to the fact
that the parameter A, which characterises the mean initial overdensity
density within some given initial radius r;, takes different values at
the different initial radii covered by a real simulation, while the
theoretical profiles are obtained assuming a fixed A, e.g., A = 0.001.
To get rid of the A dependence in our results, we use the idea of
rescaling using the true turnaround radius as described in Section
2.3. The difference is that this time we do not need a “re-rescaling’:
after we restore the profile quantities in physical units, we find the
real turnaround radius directly by its physical meaning, i.e., we locate
the radius where the physical velocity crosses zero. This method can
be applied to all models including the EdS, which we have checked
explicitly to give the same result as in the subsection above. After we
located this real turnaround radius for simulations with SST model,
we use this value for our rescaling. The result of the same simulations
and same timestamp in this new rescaling scheme then are plotted as
the solid lines in Fig. 12, and their theoretical predictions (as shown
in Fig. 3) are overplotted as the dashed lines with the same colour
scheme. In the figure titles, we have used primes to indicate the
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Figure 9. (Colour Online) The rescaled density, velocity and pressure profiles from the the same simulation of the Einstein-de Sitter model, plotted against the
rescaled radial coordinate, 2. The self-similar theoretical prediction (Bertschinger 1985) is shown as black dashed lines. The vertical dashed lines with colours

indicate the locations of the tophat edge at the same five times as shown in Fig.

8, and the numerical solutions depart from the self-similar prediction within it.

This location is moving inwards as the rescaling radius rt, increases over time. Convergence over time to the theoretical solution can be observed in the plots.
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Figure 10. (Colour Online) The tail parts of the rescaled density profiles from three EdS simulations which implement different boundary conditions but are
otherwise identical. The three panels, from left to right, show the results from using homogeneous Neumann (outflow), pure extrapolated and hybrid boundary
conditions, respectively. Only in the hybrid case does the profile near the boundary remain stable and consistent with the theoretical prediction (the dashed line).
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quantities calculated using the numerically determined turnaround

: ’
radius, r/;.

Just like the theoretical results we got in 2.3, the new rescaled
solutions are close to that in EdS universe. They are broadly in line
with the theoretical predictions as well. The shock in SST model
happens at a slightly smaller radius, and the velocity in the gas shell
just outside the shock has a bigger magnitude. This result is possibly
caused by the fact that the gravitational force is stronger in the SST
model, so that the collapse is also stronger and faster. The qualitative
trend is also as expected, as the curves for the models with screening
are between the ones of EdS and a constant enhancement of Newton’s
constant ({ = 0). Given that the real physical evolutions of these
models in the simulation are quite different (cf. Fig. 11), these results
demonstrate the reliability of ExAHYPE 2 engine to carry out both
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standard and modified gravity simulations, and support the idea that
self similarity can be found (at least as a very good approximation)
in more general gravity models beyond EdS as well.

5 DISCUSSION AND CONCLUSION

To summarise, we have studied the spherical collapse of collisional
gas in both an Einstein-de Sitter universe and SST gravity model in
this paper. We have derived self-similar solutions, for the first time,
for some special cases of the latter class of models. The existence of
self-similar solutions in spherical collapse scenarios is nontrivial: for
example, while the EdS model admits a self-similar solution, this is
lost if the model includes a cosmological constant. This is even more
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Figure 12. (Colour Online) The profiles of the same quantities as shown in Fig. 11 (solid lines) for the SST model with different parameters (see legends), now
rescaled using the real turnaround radius 7y, as described in Section 2.3. The quantities with a prime are calculated using this new rescaling radius. We also plot
the theoretical self-similar predictions described in Section 2.3 for each case, as dashed lines with the corresponding colours.

true for modified gravity models, in which the law of gravity may be
modified in complicated time- and spatial-dependent ways. Indeed,
we have tried to search for self-similar solutions in several classes of
modified gravity theories that feature certain screening mechanisms.
Chameleon-type models (Khoury & Weltman 2004a,b) do not admit
self-similar solutions, because the fifth force there is not only scale
dependent but also environment dependent. We have not found self-
similar solutions for K-mouflage-type models (Babichev et al. 2009;
Brax et al. 2013) either: in this model, the fifth force is given by

dey

F = ,BKE, (93)

where Sk is a parameter describing the coupling strength of the scalar
field ¢ with matter, which is usually taken as a constant or function
of time. The radial gradient d¢/dr can be schematically obtained by
solving

dy m(<r) ra M(Q)
K (5) OCﬂKr—z OCﬁKt_z/l_Z’ (94)

where K (-) is anonlinear function, and r, is again the EdS expression

of the turnaround radius, Eq. (15). For the fifth force to also respect
self-similarity, it should be possible to express it as

F= ffu)rtﬁ, (95)
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where ¥ is a function of A only. This is satisfied if K(-) is a linear
function and Sk is a constant, but this simply corresponds to a model
with a constant enhancement of Newton’s constant, identical to the
SST variant with £ = 0 considered above. For general K(-), one has
to require Bk to depend on both r, (and through which also depend
on the initial radius r; and overdensity A) and ¢ to satisty the above
condition. Even for the SST model we considered above, demanding
a self-similar solution places some constraints on certain details, in
particular the requirement that r. becomes a time-dependent function
which grows at the same rate as the horizon size of the EdS universe.
The existence of self-similar solutions in specific models offers us a
way to test our numerical code for models other than EdS.

The self-similar solutions we obtained for the SST model behave
as one would expect for an enhanced gravity with the Vainshtein
screening mechanism at work. For example, we see that the shock
happens at a larger radii in the SST variant with £ = 0, and the
infall velocity is larger outside the shock, compared with EdS, as a
result of a stronger gravitational collapse. For the other SST variants
where ¢ > 0, the results generally lie between EdS and ¢ = O,
indicating a suppressed fifth force, and the suppression effect is larger
for larger £. Itis notable that, despite the substantial differences in the
evolutions and solutions of the different gravity models considered,
after the (more ‘proper’) rescaling using the true turnaround radius
of individual models, the solutions in the different SST variants are
all very close to that in the EdS model with standard gravity (though
their agreement is not perfect). We also notice that, after this proper
rescaling, the self-similar solutions in the SST models depend very
weakly on A, as also happens in EdS. Apparently, we should test these
observations for other types of gravity models too. if they hold there
as well, this is an interesting indication that the properly rescaled
solutions in different gravity models are close to each other, which
in turn implies that self-similarity should hold approximately, even
though not exactly, in generic models. We leave a more detailed
exploration of this possibility to future work.

Behind our new physical insights is a new implementation of
cosmological hydrodynamical simulations of the spherical collapse
scenario for different gravity models, based on the publicly-available
hyperbolic PDE engine ExaAHYPE 2. We have described various
technical details in our implementation, including the initial and
boundary conditions which must be properly set up in order to get
stable and correct evolutions. We find that the numerical simulations
of the same EdS and SST models as introduced above yield good
agreements with the theoretical predictions we derived. This thus
not only supports our findings on the self-similarity in the consid-
ered models, but also serves as a validation of the reliability and
correctness of our ExAHYPE 2 implementation.

By comparing our theoretical predictions to the simulation results,
we find that, although to a large degree the code is capable of han-
dling the collapse scenarios in different gravity models, there are still
some inaccuracies in the current simulation results, in particular at
and around the shock. The observed shift and weakening of the shock
are likely caused by numerical dissipation, which may be suppressed
by increasing the spatial and temporal resolutions. There are several
possible ways of doing this. First, we are currently using a simple
Finite Volume formalism which employs a generic Riemann solver.
This scheme can be further extended to higher-order formalisms,
e.g., Discontinuous Galerkin methods in combination with Runge-
Kutta schemes or ADER-DG (Zanotti et al. 2015). Those schemes
are in principle compatible with our scenarios, straightforward to im-
plement, and could work properly to enhance the resolutions, but it
remains an open question if these methods are well-suited to capture
the steep gradients near the shock. We could also directly increase
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the resolution of our simulations, but this comes at additional run-
time cost. Future work will look at the outsourcing of the individual
patches to GPUs. This will provide us with the opportunity to work
with significantly finer resolutions and a much higher efficiency. For
the temporal side, we need to check if local time stepping or sub-
cycling help to reduce the vulnerability of the current explicit time
stepping scheme to numerical dissipation. It may also help to use
more accurate Riemann solvers, as the current Rusanov solver only
‘reacts’ to the biggest eigenvalue of the system, cf. Eq. (72), so that
it does not preserve the characteristics of all five evolving quantities
well if they propagate with different wave speeds.

With a working hydrodynamical simulation code at hand, where
new models of gravity can be straightforwardly implemented, a natu-
ral next step is to run simulations for more realistic modified gravity
models that do not have self-similar solutions, including the origi-
nal DGP model, the K-mouflage model and the chameleon model.
For the latter we may need to either add a multigrid solver for the
scalar field, or adopt some approximate solutions such as the thin-
shell solution. In a future project, we will compare the collapse of
collisional gas in these different models in detail. If the above specu-
lation, namely the spherical solutions rescaled by the true turnaround
radii of models are approximately the same in different cosmological
models, turns out to be correct, then the differences in the physical
solutions of these models can be largely ascribed to the differences in
their turnaround radii, which might offer a simple way to model the
modified gravity effects. In addition, we plan to add more physical
processes, such as radiative cooling (e.g., Abadi et al. 2000), in the
code, to understand how they interfere with the effects of a modified
law of gravity. Altogether, these will hopefully offer us new insights
into the behaviour of gas, and hence the galaxy formation process,
in modified gravity models.
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APPENDIX A: SPHERICAL SYMMETRY OF THE
SOLUTION

In this appendix, we show that our simulation is highly close to exact
spherical symmetry during the stable evolution phase. In Figure A1,
we plot the rescaled profiles of the same three physical quantities dis-
cussed in Section 4, sampled along six different directions (shown in
different colours) from the same simulation. The sampling directions
are all on the x-y plane from a slice of the simulation box perpendicu-
lar to the z-axis. The coordinates shown in the legend are the starting
and ending points of the sampling axis, while the black dashed line
is the theoretical self-similar prediction plotted for comparison.
These profiles all agree with each other nearly perfectly except in
the small region immediately inside the shock in the velocity profile
(middle) panel, where the curves in difference directions deviate from
each other slightly and the profile in the diagonal direction (brown
line, (0, 0)—(1.5, 1.5)) shows the most similar shape to the theoretical
pattern (though the simulation result has a different amplitude due
the reason explained in the main text). In particular, we note that the
shock position is in good agreements along the different directions.
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Figure A1. (Colour Online) The rescaled profiles of physical quantities in six different directions (as given in the legend) from the same simulation. It shows that
the profiles of all considered quantities only have a very weak dependence on the direction along which we sample the solutions. See the text for more details.
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