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A B S T R A C T 

The spherical collapse scenario has great importance in cosmology since it captures several crucial aspects of structure formation. 
The presence of self-similar solutions in the Einstein-de Sitter (EdS) model greatly simplifies its analysis, making it a powerful 
tool to gain valuable insights into the real and more complicated physical processes involved in galaxy formation. While there has 
been a large body of research to incorporate various additional physical processes into spherical collapse, the effect of modified 

gravity (MG) models, which are popular alternatives to the � cold dark matter paradigm to explain the cosmic acceleration, is still 
not well understood in this scenario. In this paper, we study the spherical accretion of collisional gas in a particular MG model, 
which is a rare case that also admits self-similar solutions. The model displays interesting behaviours caused by the enhanced 

gravity and a screening mechanism. Despite the strong effects of MG, we find that its self-similar solution agrees well with that 
of the EdS model. These results are used to assess a new cosmological hydrodynamical code for spherical collapse simulations 
introduced here, which is based on the hyperbolic partial differential equation engine EXAHYPE 2. Its good agreement with the 
theoretical predictions confirms the reliability of this code in modelling astrophysical processes in spherical collapse. We will 
use this code to study the evolution of gas in more realistic MG models in future work. 

Key words: hydrodynamics – methods: numerical. 
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 I N T RO D U C T I O N  

pherical collapse is a widely studied phenomenon in cosmology.
t describes the evolution of a spherically symmetric o v erdense
egion: ho w it slo ws do wn and decouples from the Hubble flow,
urns around, and finally collapses into a singularity or some
irialized matter distribution. Despite its simplicity, this scenario
s of great importance, as it can describe several crucial aspects of
tructure formation of different matter components (e.g. collisionless
ark matter and collisional baryonic gas), thus providing valuable
nsights into the real and more complicated cosmological process.
ome cosmological hydrodynamical simulation codes also adopt this
cenario as a test of reliability (e.g. RAMSES , Teyssier 2002 ). 

The study of spherical collapse has a long history, with some of the
arly works including Gunn & Gott ( 1972 ); Fillmore & Goldreich
 1984 ); Ryden & Gunn ( 1987 ); Subramanian, Cen & Ostriker ( 2000 ).
mong them, Bertschinger ( 1985 ) revealed an elegant self-similarity

n the solution for a matter-dominated, Einstein-de Sitter (EdS),
niverse, for both collisionless and collisional matter. Using the
urnaround radius, r ta ( t ), in the EdS model, the various quantities
n the system of evolution equations can be rescaled, such that all
he dependencies on the spherical radius r and time t are reduced
nto the dependence on a single variable λ ≡ r / r ta ( t ). This gives a
nique set of solutions of physical quantities, expressed in terms of
 E-mail: han.zhang3@durham.ac.uk 

e  

s  

2  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
, which can be used to obtain the status of the evolution at arbitrary
 r , t ). Spherical collapse is therefore one of the few scenarios where
 detailed semi-analytical solution is known in cosmology. 

In the past decades, a lot of effort has been made to incorporate
ore physical processes into the spherical collapse model. Based

n original radial collapse of matter, there are studies that look into
he effects of angular momentum (Ryden 1988 ; Siki vie, Tkache v &

ang 1997 ; Le Delliou & Henriksen 2003 ), dynamical friction
Antonuccio-Delogu & Colafrancesco 1994 ; Popolo 2009 ), and
hears (Del Popolo, Pace & Lima 2013 ; Pace, Batista & Del Popolo
014 ). On the thermodynamics side, some research also studies
ooling and heating process during the collapse (Abadi, Bower &
avarro 2000 ; Uchida & Yoshida 2004 ; McCarthy et al. 2007 ) for a
ore realistic thermal history of structure formation. 
Nowadays, studies of cosmological structure formation have

ntered a highly advanced stage, with ever more complicated physical
rocesses added into increasingly sophisticated hydrodynamical
imulations (e.g. Schaye et al. 2015 ; McCarthy et al. 2017 ; Springel
t al. 2018 ), which can realistically reproduce the observed properties
f galaxies and clusters; see e.g. Borgani & Kravtsov ( 2011 ), for
 re vie w. Comparati vely therefore the role of spherical collapse
s a stand-alone simulation experiment has declined. Ho we ver,
his scenario can still be served as a useful benchmark test to
ccess the accuracy and reliability of new simulation codes. This
xplains partially why the original spherical collapse model with
elf-similarity still attracts attention (e.g. Halle, Colombi & Peirani
019 ; Alard 2020 ). It is also worth noting that the self-similarity
© The Author(s) 2022. 
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an still hold under some other circumstances, if the physics added 
e.g. the cooling function) follows certain assumptions (Sikivie et al. 
997 ; Uchida & Yoshida 2004 ). 
This paper concerns spherical collapse in modified gravity (MG) 
odels, which are an alternative solution to a v oid several problems of

he current concordance � cold dark matter ( � CDM) cosmological 
odel. The � CDM model suggests that the majority of energy 

ensity in the Universe is CDM, a species of non-baryonic and 
on-realistic particles, and dark energy, an energy component with 
 xotic properties (e.g. ne gativ e pressure), in the form of a positive
osmological constant � (Amendola & Tsujikawa 2010 ), which 
s needed to explain the accelerated Hubble expansion. Ho we ver, 
he hypothetical � suffers from long-standing theoretical problems 
Weinberg 1989 ). MG models hope to o v ercome those issues by
xtending the standard General Relativity (GR) rather than assuming 
 xtra unobserv ed components (e.g. Linder 2010 ; Sotiriou & Faraoni
010 ). In recent years, there has been growing interest in the MG
odels, because constraining them in various astrophysical and 

osmological observations offers a powerful way to test our theory 
f gravity. 
In this context, we want to mention that there are already various

tudies which look into the spherical collapse scenarios in different 
G models (e.g. Martino, Stabenau & Sheth 2009 ; Schmidt, Hu &

ima 2010 ; Li & Efstathiou 2012 ; Barreira et al. 2014 ; Lombriser,
oyama & Li 2014 ; Lopes et al. 2018 ; Contigiani, Vardanyan & Sil-
estri 2019 ). Ho we ver, these studies generally focus on models that
o longer uphold the property of self-similarity. This is not surprising,
ecause even within GR there are strict conditions which must be sat-
sfied to have self-similar solutions. For example, the EdS model loses 
ts self-similarity property once a cosmological constant is added. 

In this paper, we investigate the spherical collapse scenario for 
ollisional gas in both EdS universe and a slightly modified version 
f the Dvali–Gabadadze–Porrati (DGP, Dvali, Gabadadze & Porrati 
000 ) braneworld model. The latter is a popular class of MG models
hat has attracted much attention in the last two decades, featuring an
nhanced strength of the total gravitational force and the Vainshtein 
creening mechanism (Vainshtein 1972 ) which suppresses deviations 
rom GR near massive objects to give the model a chance of passing
he stringent Solar system and lab constraints. Despite its complexity, 
e find that the self-similarity property can still be achieved in this
odel under certain conditions which are not unnatural. Our self- 

imilar solutions in this model will provide insights into how these 
echanisms of MG may affect structure formation in similar, but 
ore realistic models where self-similarity no longer happens. 
We then implement the spherical collapse scenario in a new 

osmological hydrodynamical code, and use the abo v e deriv ed 
elf-similar solutions to assess its ability in handling simulations 
or different gravity models. Our code is based upon the pub- 
icly available hyperbolic partial differential equation (PDE) engine 
XAHYPE 2, which implements a blockstructured adaptive mesh 

efinement (AMR) (Dubey et al. 2016 ) Finite Volume (LeVeque 
002 ) code on spacetrees (Weinzierl 2019 ), and is parallelized 
hrough a combination of MPI, OpenMP BSP parallelism, and a 
ask formulation (Li et al. 2022 ). A comparison of the theoretical
olutions and simulation results pro v es the reliability of our code,
nd we are going to use it to study more realistic and complicated
G models in future work. 
Our paper is organized as follows: in Section 2 , we briefly

ntroduce the DGP model, which itself does not admit any self-similar 
olution, and clarify the modifications we make to it to achieve self-
imilarity (Section 2.1 ). Then we re vie w the self-similar solution in
n EdS universe (Section 2.2.1 ) disco v ered by Bertschinger ( 1985 ).
ollowing a similar approach, we derive the self-similar solution 
or the modified version of the DGP model (Section 2.2.2 ). Our
ork compares the behaviour of the solutions in this model, for

e veral dif ference parameter choices, with that of the EdS model in
ection 2.3 . This analysis reveals some interesting features of the
olutions, which will be discussed in detail there. In Section 3 , we
escribe our numerical code and the simulation configuration we 
se for the spherical collapse scenario, paying particular attention to 
he implementation details and certain tricky issues in the settings 
ncluding the initial and boundary conditions (Section 3.4 ). The 
imulation results are presented and discussed in Section 4 , and
nally Section 5 is devoted to discussions and conclusions. 

 T H E O R I E S  

n this section, we introduce the physics we investigated and 
mplemented in the code. 

Throughout this paper, we assume that the background cosmology 
s that of the EdS universe, i.e. a flat matter-dominated background
for simplicity we assume that this still holds even in the DGP
odels). It used to be the standard cosmological model before 

he � CDM model replaced it in the face of growing evidence
hat the cosmic expansion rate has been accelerating at late times,
nd it still serves as a good approximation for the real Universe
etween redshifts � 300 and � 2. The EdS universe assumes a zero
osmological constant and flat spatial curvature, and the equation of 
tate of its non-relativistic matter content is P ( ρ) = 0. With these
arameters, the evolution of the scale factor of the universe, a , can
e derived analytically from the Friedmann equation as a ( t ) = Ct 2/3 ,
here t is the cosmic time, C ≡ t 

−2 / 3 
0 is a constant, and t 0 is the

osmic time today (when a = 1). This is an important assumption
e will use to derive the self-similar solution later. 

.1 The DGP gravity model 

he DGP braneworld model is an MG model in a space–time with
n extra, fifth, dimension. The base assumption of this model is
hat the universe is a four-dimensional ‘brane’ embedded in a five-
imensional space–time, which is called a ‘bulk’. 
This model provides an explanation as why gravity is much weaker

han other fundamental forces: all matter components are assumed to 
e confined on the brane, while gravitons could propagate through, 
r leak into, the extra spatial dimension. 
The space–time action of the DGP model is given by 

 = 

∫ 
brane 

d 4 x 
√ −g 

R 

16 πG 

+ 

∫ 
bulk 

d 5 x 
√ 

−g (5) 
R 

(5) 

16 πG 

(5) 
, (1) 

here R is the Ricci scalar, g is the determinant of the metric tensor, G
s Newton’s constant, and the superscript (5) means the corresponding 
uantities live in the five-dimensional bulk. Others without it are 
ormal four-dimensional quantities. 
The modified Einstein equation for the DGP models can be derived

rom the variation of the gravitational action equation ( 1 ), which
urther leads to the following modified Friedmann equation that 
o v erns the cosmic expansion history H ( a ): 

H ( a) 

H 0 
= 

√ 

�m0 a −3 + �DE ( a) + �rc ±
√ 

�rc , (2) 

here H 0 = H ( a = 1) is the Hubble constant today (when the scale
actor is a = 1), �m0 is the present-day density parameter of matter
we hav e ne glected the presence of radiation and massive neutrinos
ere since they are not rele v ant for the interest of this work), �DE ( a )
MNRAS 515, 2464–2482 (2022) 



2466 H. Zhang et al. 

M

r  

s  

c  

t  

E

r

I  

F
 

o  

b  

t  

i  

i  

t  

a
 

g  

a  

e  

T  

a  

2  

a  

m
 

i  

S

∇
a

∇

w  

m  

w  

∇  

s  

(  

q

β

f  

a

β

 

t  

t  

s  

o  

m  

b  

p  

f  

D  

t  

E  

2  

l  

s  

a  

b  

m  

s  

s  

c

2

I  

a  

r  

i  

a  

c  

w  

o  

s

2

C  

d  

a

ρ

t  

δ  

r  

b  

A  

δ  

e  

t  

i  

a  

a

t

w  

t  

t  

i  

t  

t  

m  

g

H  

A  

a

m

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/2/2464/6648825 by guest on 05 Septem
ber 2022
epresents the density parameter of a possible additional dark energy
pecies at time a , and �rc ≡ c 2 / (4 H 

2 
0 r 

2 
c ). Here, r c is the so-called

rosso v er scale, which is a new free model parameter that indicates
he scale abo v e which the gravity be gins to deviate from the standard
insteinian: 

 c ≡ 1 

2 

G 

(5) 

G 

. (3) 

t is easy to see that equation ( 2 ) goes back to the usual form of the
riedmann equation when H 0 r c → ∞ . 
The ± in equation ( 2 ) shows that this model has two branches

f solutions. There is a ‘self-accelerating’ branch (sDGP, the ‘ + ’
ranch) that can realize an accelerated Hubble expansion at late
imes without the need of a cosmological constant or dark energy,
.e. �DE ( a ) = 0. Ho we ver, this branch has se v eral unsolv ed theoretical
ssues (Koyama 2007 ). Additionally, its predicted cosmological his-
ory is significantly different from that of � CDM and the observation
lso disfa v ours this model (e.g. Song, Sawicki & Hu 2007 ). 

The other branch, the so-called normal branch of DGP (nDGP)
ravity, where equation ( 2 ) takes the ‘ −’ sign, cannot provide an
ccelerated Hubble expansion by itself, and thus some additional dark
nergy component is needed ( �DE �= 0) to explain the observation.
his model has attracted much attention in recent years as it serves
s a useful testbed of the Vainshtein screening mechanism (e.g. Brax
013 ), despite its unappealing property of being still in need for
dditional dark energy. We will describe Vainshtein screening in
ore detail below. 
The (modified) Poisson equation of DGP gravity and correspond-

ng equations of the scalar field have been derived by Koyama &
ilva ( 2007 ): 

 

2 � = 4 πGa 2 δρm 

+ 

1 

2 
∇ 

2 ϕ , (4) 

nd 

 

2 ϕ + 

r 2 c 

3 β a 2 c 2 

[
( ∇ 

2 ϕ ) 2 − ( ∇ i ∇ j ϕ ) 2 
] = 

8 π G a 2 

3 β
δρm 

, (5) 

here � and ϕ are the gravitational potential and the scalar field of the
odel, respectiv ely. The y are also known as the brane-bending mode,
hich represents the position of the brane in the fifth dimension.
 is the spatial gradient (w.r.t. to comoving coordinates), c is the

peed of light, and δρm 

= ρm 

− ρ̄m 

is the matter density perturbation
throughout this paper an o v erbar denotes the background value of a
uantity). β is a time-dependent function: 

( a) ≡ 1 ± 2 H r c 

(
1 + 

Ḣ 

3 H 

2 

)
, (6) 

or the two branches, which for the normal branch can be simplified
s 

( a) = 1 + 

�m0 a 
−3 + 2 �rc 

2 
√ 

�rc ( �m0 a −3 + �rc ) 
. (7) 

While we are interested in the DGP model, our main focus in
his paper will be the effect of a fifth force that is mediated by
he scalar field ϕ, denoted by the second term on the right-hand
ide of equation ( 4 ). To gain flexibility and to ensure self-similarity
f the resulting model behaviour, we take the liberty to keep the
ain features of equation ( 5 ) but allow deviations from the exact

ehaviour of the sDGP or nDGP models. More explicitly, we will
romote r c to a time-dependent function, and also allow β to differ
rom equation ( 6 ). We remark that such variations from the original
GP model are not uncommon in other MG models involving

he Vainshtein mechanism, notably the cubic Galileon (Deffayet,
NRAS 515, 2464–2482 (2022) 
sposito-Farese & Vikman 2009 ; Nicolis, Rattazzi & Trincherini
009 ) and the Proca (Heisenberg 2014 ) theories. Our modification
eads to losses of certain properties of the original DGP model,
uch as being an interesting alternative to � to explain the cosmic
cceleration. Yet, the latter is not the focus of this work. In the context
elow, we call our modified DGP model the Self Similar Test (SST)
odel to indicate that this is a test case involving MG mechanism and

elf-similar property. This case is designed as a toy model achieving
elf-similarity in an enhanced and screening gravity and is used for
ode experiments of EXAHYPE 2. 

.2 Self-similar behaviour in collapse of collisional gas 

n this subsection, we describe the self-similar collapse of collisional
nd non-radiative gas in some models. We first re vie w the classic
esult from Bertschinger ( 1985 ), which applies to standard gravity
n EdS universe. Then we proceed to show that self-similarity can
lso be achieved in the SST model with Vainshtein screening. These
an be used as a test case to verify our numerical implementation
ith EXAHYPE 2 for both the standard and MG scenarios, though
ur implementation of MG is not restricted to the SST model where
elf-similarity holds. 

.2.1 EdS universe 

onsider a uniform spherical o v erdensity re gion in the matter-
ominated universe background. Its initial condition could be written
s 

= 

1 

6 πGt 2 i 

{
1 + δi , r > R i 

1 , r < R i , 
(8) 

 i < t 0 is the initial cosmic time for this scenario to begin, δi =
ρ/ ̄ρ 	 1 the density contrast at t i , where ρ̄ = ρ̄( t) and δρ are,
espectively, the mean matter density at time t and the density pertur-
ation, and R i is the initial radius of the spherical o v erdensity re gion.
t the beginning, the Hubble flow is approximately unperturbed as

i 	 1. Thus, we have v i = H i r i and H i = 2/(3 t i ). As the universe
xpands, the matter inside R i starts to decelerate and decouple from
he Hubble flow because of the slightly higher density. At some point
t stops expanding completely (so-called ‘turnaround’) and turns into
 collapse. The turnaround for the mass shell at R i initially happens
t a cosmic time and max radius (Bertschinger 1985 ) 

 ita = 

3 π

4 
δ

−3 / 2 
i t i , r ita = R i δ

−1 
i , (9) 

here the subscript ita stands for ‘initial turnaround’. Matter inside
he initial o v erdensity re gion starts to collapse first and all matter
here infalls at the same time. No shell crossing happens. The matter
nitially in more distant shells (i.e. at initial radii r i > R i ) will start
o collapse in progressively later times. The radius at which they
urn around can be calculated using the Lagrangian picture. For the

ass element initially located at r i , its evolution obeys the Newton’s
ravity law: 

d 2 r 

d t 2 
= −Gm 

r 2 
. (10) 

ere, m accounts all mass interior to the shell we are considering.
s no shell crossing happens during the evolution, it can be written

s 

 = m ( r i ) = 

4 

3 
πρi r 

3 
i 

(
1 + δi 

R 

3 
i 

r 3 i 

)
≡ 4 

3 
πρi r 

3 
i (1 + � ) , (11) 
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here ρi = 1 / (6 πGt 2 i ) is the background density at t i for an EdS
niverse. It also defines � ≡ δi R 

3 
i / r 

3 
i . Equation ( 10 ) then can be

ecast using the following dimensionless time and radius variables, 
≡ t / t i and y ≡ r / r i , as 

d 2 y 

d τ 2 
= −2 

9 
( 1 + � ) 

1 

y 2 
. (12) 

Integrating this equation twice and using the assumption � 	 1, 
he solution can be expressed implicitly as (Bertschinger 1985 ) 

= 

3 

4 
( θ − sin θ ) � 

−3 / 2 ≡ d� 

−3 / 2 , (13) 

ith 

� = sin 2 
θ

2 
≡ η, (14) 

here we have defined the variables d and η for later use. As
urnaround happens when y reaches its maximum, this yields to θ ta = 

(where a subscript ta means ‘turnaround’). From equation ( 13 ) this
orresponds to a time τ = (3 π /4) � 

−3/2 and y ta = r ta / r i = � 

−1 .
ombining these two expressions with the relationship between δi , 
 , and R i given in equation ( 11 ), it is straightforward to derive the

ollowing expression of the turnaround radius: 

 ta ( t) = 

(
3 π

4 
t i 

)−8 / 9 

δ
1 / 3 
i R i t 

8 / 9 , for t ≥ t ita . (15) 

Now we switch to the fluid picture. The motion of a collisional
as in this system is go v erned by the gravity-driven Euler equations:

d ρ

d t 
≡

[
∂ 

∂t 
+ v 

∂ 

∂r 

]
ρ = −ρ

1 

r 2 

∂ 

∂r 

(
r 2 v 

)
, (16) 

d v 

d t 
= − 1 

ρ

∂p 

∂r 
− Gm 

r 2 
, (17) 

d 

d t 

(
pρ−γ

) = 0 , (18) 

∂m 

∂r 
= 4 πr 2 ρ, (19) 

here ρ = ρ( r , t ), v = v( r , t ), and p = p ( r , t ) are the density, velocity,
nd pressure of the fluid at radius r and time t . m ≡ m ( < r ) represents
he total mass within a given radius r , and γ the adiabatic index. We
ow use equation ( 15 ) and define the new radial coordinate: 

≡ r 

r ta 
, (20) 

s well as the dimensionless quantities V , D , P , and M : 

( r, t) = 

r ta 

t 
V ( λ) , (21) 

( r, t) = ρH D( λ) , (22) 

( r, t) = ρH 

( r ta 

t 

)2 
P ( λ) , (23) 

 ( r, t) = 

4 π

3 
ρH r 

3 
ta M( λ) , (24) 

here ρH = ρH ( t ) is the critical density at time t , which is equal
o the mean matter density ρ̄m 

( t) in the EdS model. These allow us
o cast equations ( 16 –19 ) as the following new dimensionless fluid
quations (Bertschinger 1985 ): (
V − 8 

9 
λ

)
D 

′ + DV 

′ + 2 
D 

λ
V − 2 D = 0 , (25) (

V − 8 

9 
λ

)
V 

′ − 1 

9 
V = −P 

′ 

D 

− 2 

9 

M 

λ2 
, (26) 
(
V − 8 

9 
λ

)(
P 

′ 

P 

− γ
D 

′ 

D 

)
= 

20 

9 
− 2 γ, (27) 

 

′ = 3 λ2 D, (28) 

here a prime means the deri v ati ve w.r.t. λ. Those equations only
ave one variable λ and thus could be solved directly given proper
oundary conditions (see Section 2.3 below). No further time or 
ength-scales are involved, which means that the solutions to the 
ystem would remain identical throughout the evolution if expressed 
n terms of the λ coordinate. This is where self-similarity comes from.
b viously, if an y new terms added in equations ( 16 –19 ) depend on
ther scales besides λ, the solution to that new system will deviate
rom this self-similar solution. 

.2.2 SST model 

n the spherically symmetric system, the scalar field equation ( 5 ) gets
implified significantly (see e.g. Li, Zhao & Koyama 2013 ): 

2 r 2 c 

3 βc 2 

1 

r 2 

∂ 

∂r 

[ 

r 

(
∂ϕ 

∂r 

)2 
] 

+ 

1 

r 2 

[
r 2 

∂ϕ 

∂r 

]
= 

8 πG 

3 β
δρm 

. (29) 

his equation does not contain scale factor a as we use physics radius
ere. We then define 

ˆ  ( r) ≡ 4 π
∫ r 

0 
δρm 

( r ′ ) r ′ 2 d r ′ , (30) 

here we have used ˆ m to distinguish from m ( r ) introduced in
quation ( 10 ), since ˆ m does not account for the background matter
ensity. Equation ( 29 ) then can be integrated once to give 

2 r 2 c 

3 βc 2 

1 

r 

(
∂ϕ 

∂r 

)2 

+ 

∂ϕ 

∂r 
= 

2 

3 β

G ̂  m ( r) 

r 2 
≡ 2 

3 β
g N ( r) , (31) 

olving which gives the radial gradient of scalar field directly as 

∂ϕ 

∂r 
= 

[
2 

2 r 2 c 

3 βc 2 

1 

r 

]−1 
[ 

−1 + 

√ 

1 + 4 
2 r 2 c 

3 βc 2 

1 

r 

2 

3 β
g N 

] 

, (32) 

here we have dropped the other branch of solution that is un-
hysical. The equation could be simplified further by defining the 
Vainshtein radius’ r V as follows: 

 

3 
V = 

16 r 2 c 

9 β2 c 2 
G ̂  m ( r ta ) . (33) 

ote that here we have used ˆ m within r ta ( t ) to define the Vainshtein
adius, which differs from the usual definition that only accounts for
he mass within the tophat radius – this is for convenience, because
n this way we end up with a generic expression that does not depend
n the particular size of any tophat. Now the gradient of scalar field
eads as 

∂ϕ 

∂r 
= 

4 

3 β

r 3 

r 3 V 

ˆ m ( r ta ) 

ˆ m ( r, t) 

⎡ 

⎣ 

√ 

1 + 

r 3 V 

r 3 

ˆ m ( r, t) 

ˆ m ( r ta ) 
− 1 

⎤ 

⎦ g N ( r) . (34) 

ote that ∂ ϕ/ ∂ r determines the strength of the fifth force, and one
an easily see the following limiting behaviour: 

∂ϕ 

∂r 
� 

2 

3 β
g N ( r) , r � r V , 

∂ϕ 

∂r 
	 2 

3 β
g N ( r) , r 	 r V . (35) 

f the scale of studied problem is significantly smaller than the
ainshtein radius r V , the gradient of the scalar field is also much
MNRAS 515, 2464–2482 (2022) 
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maller than that of the Newtonian potential, such that the fifth force
s negligible compared with the standard Newtonian force. This is
he idea behind the Vainshtein screening. 

Our next step is to try to recast the expression of the fifth force in
he self-similar form (which, needless to say, is not al w ays possible)
imilar to what we get abo v e for the EdS universe. This means that
e hope that the ratio between the fifth force and standard Newtonian
ravity, i.e. the coefficient in front of equation ( 34 ), depends on time
 and radius r only through the combination r ta ( t ). We again define
≡ r / r ta ; note that this r ta is the same as in equation ( 15 ) – this is
ainly for convenience, but it does mean the r ta in this expression is

o longer the true turnaround radius in the SST model. The mass can
hen be rewritten, using the definition of M ( λ) give in equation ( 24 ),
s 

ˆ  ( r , t) = 

4 π

3 
ρH r 

3 
ta 

[
M ( λ) − λ3 

] ≡ 4 π

3 
ρH r 

3 
ta 

ˆ M ( λ) . (36) 

s mentioned abo v e, we hav e remo v ed the contribution from
he background mass as the fifth force only depends on density
erturbations. The Vainshtein radius now reads as 

 

3 
V = 

16 r 2 c 

9 β2 c 2 

2 

9 

r 3 ta 

t 2 
ˆ M (1) , (37) 

o that 

r 3 V 

r 3 
= 

16 r 2 c 

9 β2 c 2 

2 

9 t 2 
ˆ M (1) 

λ3 
, (38) 

nd 

ˆ m ( r, t) 

ˆ m ( r ta ) 
= 

ˆ M ( λ) 
ˆ M (1) 

. (39) 

hese mean that 

r 3 V 

r 3 

ˆ m ( r, t) 

ˆ m ( r ta ) 
= 

16 r 2 c 

9 β2 c 2 

2 

9 t 2 
ˆ M ( λ) 

λ3 
. (40) 

o achieve the self-similarity, we need to ensure that equation ( 40 )
nly depends on λ. The t dependence of r 2 c /β

2 t 2 need to be cancelled
ut. Ho we ver, β also appears in equation ( 34 ) in the o v erall factor
/(3 β), and thus should be constant o v er time to a v oid reintroducing
n explicit t dependency. This then leads to r c ∝ t ∝ a 3/2 , with the
econd proportionality true in an EdS universe. 

Denoting r c ( t ) = r c 0 ( t / t 0 ), where t 0 is the cosmic time today and
 c 0 is the value of r c at t 0 , and defining the dimensionless constant 

≡ r c0 

ct 0 
= 

r c0 × ( t/t 0 ) 

ct 
= 

r c ( t) 

ct 
= 

3 H ( t ) r c ( t ) 

2 c 
= 

3 H 0 r c0 

2 c 
, (41) 

e get 

r 3 V 

r 3 

ˆ m ( r, t) 

ˆ m ( r ta ) 
= 

32 ζ 2 

81 β2 

ˆ M ( λ) 

λ3 
. (42) 

herefore, the solution can be written as 

∂ϕ 

∂r 
= 

27 β

8 ζ 2 

λ3 

ˆ M ( λ) 

⎡ 

⎣ 

√ 

1 + 

32 ζ 2 

81 β2 

ˆ M ( λ) 

λ3 
− 1 

⎤ 

⎦ g N ( r) . (43) 

his expression shows that the fifth-force-to-Newtonian-gravity ratio
an be written in a form that only depends on λ, which satisfies the
equirement of self-similarity. It is straightforward to show that the
oefficient of g N in the abo v e equation is al w ays smaller than 2/(3 β),
hich means that the Vainshtein screening al w ays w orks (though not
ecessarily al w ays strong). 
Let us briefly comment that, according to its definition in equa-

ion ( 41 ), ζ is the ratio between the crosso v er radius r c ( t ) and ct . The
NRAS 515, 2464–2482 (2022) 
atter can be considered as some characterization of the size of the
dS universe (actually it is 3 ct ). Therefore, the fact that this ratio is
 constant in time implies that the Vainsthein screening mechanism
s al w ays ef fecti v e on scales that correspond to a fix ed fraction of
he size of the universe, and therefore it should not be surprising that
he self-similar properties of the EdS model have been preserved for
his particular choice of r c ( t ). Since r c characterizes the length-scale
eyond which gravity is modified in the SST model, we expect that
or any physically interesting scenario we need to have ζ ∼ O(1).
he choice of ζ = 2/3, for example, corresponds to H 0 r c 0 / c = 1,
hich leads to a similar Vainshtein screening efficiency to that for a

ypical parameter choice in studies of the nDGP model for the same
alue of β. 

The actual strength of the fifth force is 1 
2 

∂ϕ 

∂r 
, which means that

he final expression for the fifth-force-to-Newtonian-gravity ratio is
iven by 

( λ) ≡ 27 β

16 ζ 2 

λ3 

ˆ M ( λ) 

⎡ 

⎣ 

√ 

1 + 

32 ζ 2 

81 β2 

ˆ M ( λ) 

λ3 
− 1 

⎤ 

⎦ . (44) 

urning to the deri v ation of the self-similar equations in the SST
odel, i.e. the counterparts of equations ( 25 –28 ), it is evident that

nly equation ( 26 ) needs to be modified. It is the only place where
he law of gravity enters the calculation. Ho we ver, instead of simply

ultiplying the − 2 
9 

M 

λ2 by 1 + ξ ( λ), the correct final version of
quation ( 26 ) is slightly more complicated. This is because ξ ( λ) is the
atio between the fifth force and g N , which itself does not receiv e an y
ontribution from the background matter density, c.f., equation ( 31 ).
n the other hand, the term − 2 

9 
M 

λ2 contains contributions from the
ackground matter. Taking this into account leads to the following
ST version of equation ( 26 ): (
V − 8 

9 
λ

)
V 

′ − 1 

9 
V = −P 

′ 

D 

− 2 

9 

M 

λ2 
− 2 

9 

ˆ M 

λ2 
ξ ( λ) , (45) 

r equi v alently (
V − 8 

9 
λ

)
V 

′ − 1 

9 
V = −P 

′ 

D 

− 2 

9 

M 

λ2 
[ 1 + ξ ( λ) ] + 

2 

9 
λξ ( λ) . (46) 

A similar modification also appears in the SST counterpart of
quation ( 10 ), which now reads 

¨ = −2 

9 
( 1 + � ) 

1 

y 2 
[ 1 + ξ ( y, τ ) ] + 

2 

9 

y 

τ 2 
ξ ( y, τ ) , (47) 

here ξ has been defined in equation ( 44 ), but is now expressed in
erms of the dimensionless radius and time, y and τ . More explicitly, 

= 

27 β

16 ζ 2 

y 3 

(1 + � ) τ 2 − y 3 

[ 

√ 

1 + 

32 ζ 2 

81 β2 

(
1 + � 

y 3 
τ 2 − 1 

)
− 1 

] 

. 

(48) 

his equation is needed for the exact solution of our equations in the
ext section. 
Before concluding this subsection, let us note that one limit of the

ST model arises from ζ → 0, in which equation ( 43 ) approaches 

∂ϕ 

∂r 
→ 

2 

3 β
g N ( r) , (49) 

nd so the fifth-force-to-Newtonian-gravity ratio approximately be-
omes 1/(3 β), which is the linear-regime (i.e. no screening) solution.
his corresponds to a time- and scale-independent enhancement of
ewton’s constant by a factor of 1/(3 β) since we are assuming β to
e a constant here. 
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.3 Self-similar solutions 

ur next step is to find the exact solution to our self-similar
quations equations ( 16 –19 ): the profile of D ( λ), V ( λ), P ( λ), and
 ( λ). 
At the beginning stage, the spherical collapse can be described 

y a pressureless infall. Outside the radius of the tophat, the inner
pherical shells infall at a greater speed than the outer shells, meaning
hat there is no shell-crossing or squeezing. Ho we ver, when the infall
peed of a given shell increases to a point where it exceeds the sound
peed c s of the fluid, the shell impacts upon the fluid element inside
t before there is enough time for the latter to adjust. A discontinuity
f fluid properties, such as velocity, pressure, and density, then starts
o arise there, which is known as a shock. The shock location is our
rimary quantity of interest when we validate the outcome of our 
imulation. We assume the shock happens at radius r s or λs ≡ r s / r ta 
the subscript s means shock), where we can apply the Rankine–
ugoniot jumping conditions, written in dimensionless forms: 

 2 V 2 = D 1 V 1 + ( D 2 − D 1 ) V s , (50) 

 2 V 

2 
2 + P 2 = D 1 V 

2 
1 + P 1 + ( D 2 V 2 − D 1 V 1 ) V s , (51) 

D 2 V 2 

(
γ

γ − 1 

P 2 

D 2 
+ 

1 

2 
V 

2 
2 

)
− D 1 V 1 

(
γ

γ − 1 

P 1 

D 1 
+ 

1 

2 
V 

2 
1 

)

= V s 

[
D 2 

(
1 

γ − 1 

P 2 

D 2 
+ 

1 

2 
V 

2 
2 

)
− D 1 

(
1 

γ − 1 

P 1 

D 1 
+ 

1 

2 
V 

2 
1 

)]
. 

(52) 

ere, a subscript 1 or 2 is used to denote the pre-shock and post-shock
alues of a quantity , respectively , and V s is the dimensionless speed
f the shock position itself. Physically, the three jumping conditions 
epresent the continuity of mass, momentum, and energy across the 
hock. 

One can analytically calculate the pre-shock solutions in terms of 
s using equation ( 12 ) and its solutions, equations ( 13 , 14 ) for � 	
: 

 1 = 

d 2 s η
−3 
s 

1 + 3 χs 

, (53) 

 1 = 0 , (54) 

 1 = λs 

sin θs ( θs − sin θs ) 

( 1 − cos θs ) 
2 , (55) 

 1 = λ3 
s d 

2 
s η

−3 
s . (56) 

here θ s = θ ( τ s ), ηs ≡ sin 2 θs 

2 ≡ y s � , d s ≡ 3 
4 ( θs − sin θs ) are the

alues of η and d at θ s , and χs ≡ 1 − 3 
2 

V s 
λs 

. Combining equations ( 50 –
6 ), we get the boundary condition for the other side (post side) of
he shock: 

 2 = 

γ + 1 

γ − 1 
D 1 , (57) 

 2 = 

8 

9 
λs + 

γ − 1 

γ + 1 

(
V 1 − 8 

9 
λs 

)
, (58) 

 2 = 

2 

γ + 1 
D 1 

(
V 1 − 8 

9 
λs 

)2 

, (59) 

 2 = M 1 . (60) 

he entire post-shock solution can then be obtained by numerically 
ntegrating equations ( 25 –28 ) inwards from λ = λs , using these
oundary conditions. Ho we ver, since λs is not kno wn a priori, this is
 trial and error process where the value of λs is updated iteratively
ntil when the corresponding solutions meet the following physical 
oundary conditions in the centre of the system: 

 ( λ = 0) = M( λ = 0) = 0 . (61) 

his is how Bertschinger ( 1985 ) got his self-similar solution and we
lot our reproduced result here in Fig. 1 . 
While the use of the θ variable to write the solution to equation ( 12 )

n the implicit forms of equations ( 13 , 14 ) is convenient, this is
mpossible for the SST model where the corresponding spherical 
ollapse equation takes a more complicated form. Ho we ver, the
ntroduction of θ in the EdS model is largely a matter of choice
or convenience, and the same physics can be produced using τ as
ell. Because this is what we shall use for the SST model, we decide

o also use τ instead of θ to obtain the numerical self-similar solutions
or the EdS model. This means that we need to express the pre-shock
olutions to D , P , V , and M at τ s . For the velocity, using its definition

 = 

d r 

d t 
= 

r i 

t i 
ẏ = 

r 

t 

τ

y( τ ) 
ẏ = λ

r ta 

t 

τ

y( τ ) 
ẏ ( τ ) , 

e obtain 

 1 ( λs ) = λs 

τs 

y ( τs ) 
ẏ s , (62) 

here an o v erdot denotes the deri v ati v e w.r.t. τ , and ẏ s = ẏ ( τs ) . F or
 , using 

 = 

m 

4 
3 ρH r 

3 
ta 

= 

ρi 

ρH 

(
r i 

r ta 

)3 

(1 + � ) , 

e have 

 1 ( λs ) = 

(
3 π

4 

)8 / 3 1 + � 

� 

τ−2 / 3 
s . (63) 

or D , using 

 λ2 D( λ) = 

d M/ d τ

d λ/ d τ
= 

− 2 
3 

(
3 π
4 

)8 / 3 1 + � 

� 

τ−5 / 3 (
3 π
4 

)8 / 9 
� 

−1 / 3 τ−8 / 9 
(
ẏ − 8 

9 
y( τ ) 
τ

) , 

e have 

 1 ( λs ) = −2 

9 
τs 

1 + � 

y 2 s 

(
ẏ s − 8 

9 
y s 
τs 

) . (64) 

or P , we have P 1 = 0 again. 
The following steps are the same as before. We can use the

ankine–Hugoniot jumping conditions to obtain D 2 , P 2 , V 2 , and
 2 , and numerically integrate the equations again to find the post-

hock solutions. This time we need to vary τ s for our trial-and-error
rocess after � is specified. y s and ẏ s can be calculated numerically
rom τ using equation ( 10 ) for the EdS model and equation ( 47 )
or the SST model. For EdS, we have explicitly checked that using
he τ -based approach to set up the boundary conditions for the post-
hock solutions gives identical answer as using equations ( 53 –56 ),
s expected. 

We summarize our result for self-similar solutions in SST gravity 
ith in Fig. 1 . The black curves in the figure are the self-similar

olutions to D , P , V , and M for the EdS model, which we find to
e in excellent agreement with literature results (e.g. Bertschinger 
985 ). The coloured curves show the results for several variants
f the SST model described in Section 2.2.2 , with the case ζ = 0
red) corresponding to a constant enhancement of G by 1/(3 β). The
ases with ζ = 1, 5, and 10 represent progressively more efficient
ainshtein screening, which explains why they are in between the 
dS and ζ = 0 cases. In particular, we see that at ζ = 10 the screening
MNRAS 515, 2464–2482 (2022) 
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M

Figure 1. (Colour Online) Self-similar solution for gravity in EdS universe and SST models with different ζ choices. Rescaled D ( λ), P ( λ), V ( λ), and M ( λ) are 
plotted. The value of ζ indicates the strength of the Vainshtein screening. It gets more efficient when ζ gets bigger. The case ζ = 0 means there is no screening, 
i.e. the modification of SST are equi v alent to a constant enhancement of gravity all the time. All curves here are obtained using � = 0.001. 

i  

E  

f  

t  

h  

d  

t
 

0  

c
6  

s  

1  

�  

m  

p  

k  

l  

c  

t  

o  

h  

t  

p  

c  

s  

g  

a
 

i  

f  

w  

e  

b
2  

s  

c  

g  

t  

t  

r  

r  

t  

o  

t  

g  

t  

f  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/2/2464/6648825 by guest on 05 Septem
ber 2022
s already very efficient so that the brown curves are very close to
dS. The qualitative trend also agrees with what one should expect

or a model with enhanced gravity: the infall becomes faster such that
he pre-shock solution of V becomes more ne gativ e and the shock
appens at larger radius; the density D and pressure P are also higher
ue to the stronger structure formation, and the latter explains why
he enclosed mass M within a given radius is larger. 

The SST results in Fig. 1 are obtained with the parameter � =
.001. The � dependence of the solution, which we have explicitly
hecked, can already be seen at the equation level, cf. equations ( 62 –
4 ), and also in Fig. 2 , where we show the two sets of self-similar
olutions for two models, EdS (dashed lines), and SST with β =
.0, ζ = 1 (solid lines). The different colours indicate the value of
 for each curve, as shown by the legends. We can see that the SST
odel has a very strong � dependence. A similar dependence is also

resent in the EdS case, but is much weaker there – indeed, it is
nown that in EdS there is approximately no � dependence in the
imit � 	 1 (Bertschinger 1985 ). This � dependence comes from our
hoice of using the turnaround radius r ta ( τ ), given in equation ( 15 ),
o define the dimensionless coordinate λ, where r ta itself depends
n � . For the EdS model, rescaling r using this turnaround radius
elps to cancel out the � dependence from equation ( 12 ), because
his r ta is calculated from the same dynamical equation and has the
hysical meaning of where the shell start to collapse. But such a
NRAS 515, 2464–2482 (2022) 
ancellation should not be expected to happen when we use the
ame equation ( 15 ) to define λ for the SST (and generally other
ravity) models, since it does not represent the true turnaround radius
nymore. 

Using the same r ta to define λ in all models abo v e certainly has
ts advantages. One of these is that equation ( 15 ) is an analytical
unction with a power-law dependence on τ , which is convenient
hen deriving the dimensionless equations go v erning the self-similar

volution. It also allows these equations to take the similar form
etween the SST and EdS models. F or e xample, equations ( 25 –
8 ) remain almost the same for the SST model, with only some
light changes of equation ( 26 ) to equation ( 46 ). In addition, Fig. 1
learly shows the effect of MG law on the collapse of collisional
as and on the formation of shock: this also benefits from the fact
hat we have used the same ‘turnaround’ radius, r ta ( τ ), to define
he rescaled quantities in all models, so that the differences in the
escaled quantities reflect the differences in the same quantities pre-
escaling. Nevertheless, for theoretical interest, we also want to see
he results when we actually define λ using the true turnaround radius
f each model. Because there are no analytical expressions for r ta for
he SST model, this has to be done in a ‘post-processing’ way: after
etting the profile V ( λ) by following the abo v e steps, we can obtain
he real turnaround radius in the pre-shock V ( λ) solution, by looking
or the value of λ′ 

ta where V ( λ′ 
ta ) crosses 0; we then get the correct

art/stac1991_f1.eps
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Figure 2. (Colour Online) Two sets of the self-similar solutions are presented here, with the dashed lines for standard gravity in EdS and the solid lines for SST 

model of β = 1.0, ζ = 1. Different choices of � are indicated by colours. The � dependence in EdS case is negligible as the solutions assume the limit � 	 1 
(Bertschinger 1985 ). On the other hand, the results for SST model shows a clear dependence on � , which we explain in the text. 
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urnaround radius as 

 

′ 
ta = 

(
λ′ 

ta 

λta 

)
r ta ≡ αr ta , (65) 

nd use r ′ ta to rescale our solutions for the other quantities, which is
qui v alent to performing the following ‘re-rescaling’: 

λ → α−1 λ, 

D → D, 

P → α−2 P , 

V → α−1 V , 

 → α−3 M. (66) 

he new result is summarized in Fig. 3 . While we only show the
esults obtained using � = 0.001 here, we find that using � = 0.01,
.1, 0.2 giv e v ery similar results. One notable property is that the new
escaled profiles are very close to that in EdS universe, i.e. the SST
odel behaves similarly to standard gravity if expressed in terms of

he λ coordinate which is defined using the true turnaround radius 
f the model. As the real physical evolutions of these models are
ery different, this similarity is quite interesting, since it suggests 
hat self-similarity works (at least to a good approximation) in more 
eneral models than just EdS. 
As we shall see below, this ‘re-rescaling’ idea using the true
urnaround radius can also be applied to the numerical simulation 
esult from EXAHYPE 2, and help to check its reliability on handling
his scenario. 

 N U M E R I C A L  SI MULATI ONS  WI TH  EXAHYPE 

 

n this section, we first introduce the numerical code we implement on
XAHYPE 2, then describe how we configure the spherical collapse 
cenario with it. 

Our simulations are based upon an adaptive Cartesian mesh 
osting a Finite Volume discretization with an explicit Euler. The 
ode is realized through EXAHYPE , which is a publicly available
ngine designed for generic hyperbolic PDEs that arise in different 
ranches of sciences and engineering. We rely on the second- 
eneration EXAHYPE 2 code which is a rewrite that has been used
or astrophysical challenges before (e.g. Reinarz et al. 2020 ). 

.1 Spatial and temporal discretization 

XAHYPE 2 constructs the spatial discretization from a spacetree 
ormalism (Weinzierl 2019 ) combined with block-structured AMR 

Dubey et al. 2016 ): The computational domain is embedded in a
MNRAS 515, 2464–2482 (2022) 
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M

Figure 3. (Colour Online) The new self-similar solutions of SST models with the same ζ choices as in previous figures, after the ’re-rescaling’. Those curves 
now has little dependence on � , and behave closely to the EdS cases. 
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ube and split into three equal parts along each coordinate axis. This
ields 3 3 = 27 smaller cubes. We continue recursively, i.e. decide for
ach cube whether to cut it into 27 subcubes again. The refinement
ecision or criterion is subject of discussion below. The process
ields an adaptive refined Cartesian mesh. Starting from an initial
daptive mesh, dynamic adaptivity could be realized by applying the
plitting in between time-steps to yield a finer mesh. 

Each cube hosts a p × p × p Cartesian mesh. We call these
artesian meshes patches and make them carry the actual solution

epresentation: each mesh element in the patch holds a piecewise
onstant solution of the go v erning equations, i.e. defines one ‘finite
olume’. Every patch thus consist of p 3 volumes. The patch of
olumes is augmented with a ‘halo 1 layer’ of width one around it.
he patches hence yield a non-o v erlapping domain decomposition
f the computational domain, while the haloes introduce an o v erlap
etween them. 

Let the vector � Q : R 

d × R 

+ �→ R 

5 denote the unknowns of interest
s they evolve over time, where the symbol � highlights that this is a
ata (rather than space) vector that in our case has a dimensionality
f 5. We approximate the time deri v ati ves with forward finite
NRAS 515, 2464–2482 (2022) 

 Note that the word ‘halo’ here is a technical term indicating an extra layer 
f volumes surrounding each patch, and differs from its usual meaning in 
osmology, e.g. dark matter haloes. 

i  

f
 

(  

a  

e  
if ferences, i.e. d � Q 

d t ≈ � Q 

new − � Q 

old 

δT 
with a gi ven time-step size δT and

� 
 

old , � Q 

new representing the values of � Q at the start and end of the
ime-step. Our equations are a set of generic first-order hyperbolic
DEs 

d � Q 

d t 
+ ∇ · F ( � Q ) = S( � Q ) , (67) 

here F ( � Q ) and S( � Q ) are the flux and source term, respectively.
ere, we have used bold symbols to denote space vectors to
istinguish them from the notation for data vectors introduced above.
he generic first-order hyperbolic PDEs can be written in a weak

ormulation for one time-step as ∫ 
�×[ T ,T + δT ] 

d � Q 

d t 
χd x d t = −

∫ 
�×[ T ,T + δT ] 

∇ · F ( � Q ) χd x d t 

+ 

∫ 
�×[ T ,T + δT ] 

S( � Q ) χd x d t, (68) 

here d x runs o v er the domain �, [ T , T + δT ] denotes the time
nterval, and χ ( x , t) is a test function. Equation ( 68 ) needs to hold
or arbitrary χ to fulfil equation ( 67 ). 

In EXAHYPE 2, we adopt the Rusanov Finite Volume solver
LeVeque 2002 ) to solve the Riemann problem that arises once we
ssume that the solution remains constant within every time-step and
very volume v, and set all test function as characteristic function
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Figure 4. (Colour Online) A two-dimensional cut through one quadrant 
of the computational mesh. The colours represent subdomains handled by 
different threads of different ranks. As the illustration is a cut-through, the 
SFC structure is not visible directly. 
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f one finite volume, i.e. they are χv ( x , t) = 1 within v and vanish
nywhere else. The integration of equation ( 68 ) over time gives us 

1 

δT 

∫ 
v 

d x 
[ 

� Q ( T + δT ) − � Q ( T ) 
] 

= 

∫ 
v 

d x 
[ 
−∇ · F 

(
� Q ( T ) 

)
+ S 

(
� Q ( T ) 

)] 

= 

∫ 
v 

S 
(

� Q ( T ) 
)

d x −
∮ 

∂v 

F ( T ) · d S , (69) 

here d S is the (oriented) area element of the surface of the volume
 , ∂v . Here, the closed-surface integration is decomposed into the
ummation of multiple faces that have constant normal vector, 
espectively. At the same time, we assume the solution vector � Q

o be piecewise constant, so we apply the following replacement: ∫ 
v 

©d x → ©V v , 

∮ 
∂v 

© · d S → 

∑ 

∂v 

© · n S ∂v , (70) 

here V v is the volume of v, S ∂v , n are the area and unit normal
ector of one face of ∂v, respectively, and © ( ©) denotes a generic
calar (space vector) function. This leads to final explicit Euler time- 
tepping scheme we implemented in the code: 

 v : � Q ( T + δT ) − � Q ( T ) = S( � Q ) T V v + 

∑ 

∂v 

Flux ±( � Q ) 
∣∣∣
∂v 

T S ∂v , 

(71) 

ith the so-called Rusanov flux (Rusanov 1961 ): 

lux ±( � Q ) 
∣∣∣
∂v 

= 

1 

2 

(
F n ( � Q 

+ ) + F n ( � Q 

−) 
)

−max 
(
λmax ( � Q 

+ ) , λmax ( � Q 

−) 
)(

� Q 

+ − � Q 

−
)

. (72) 

 n is the flux term e v aluated along n of the considered ∂v for the
espective volume. Flux ±( � Q ) in equation ( 72 ) averages component- 
isely o v er the flux within the two adjacent v olumes. The a verage

hen is corrected (limited): λmax is the largest eigenvalue of the matrix 
 ( � Q ) acting on the gradient along n if we write down the PDE along

he face normal as 

d � Q 

d t 

∣∣∣
n 
+ A ( � Q ) 

d � Q 

d x n 
= ... (73) 

t indicates the largest propagating speed of the quantities in the 
ystem. 

We close this subsection by briefly commenting that δT is subject 
o the Courant–Friedrichs–Lewy (CFL) condition with 

T < C 

| δv | 
λmax 

, (74) 

here C < 1 is a problem-specified safety parameter. Our scheme 
mploys a global time-stepping scheme and thus uses the smallest 
lobal face length | δv | . It remains invariant o v er time as we fix the
nest resolution in our simulations. The maximum eigenvalue λmax , 
o we v er, changes o v er time and thus has to be recalculated after each
tep. 

.2 Implementation 

ur code splits up the computational domain along the Peano space- 
lling curve (SFC) into subdomains (Weinzierl 2019 ; Li et al. 2022 )
Fig. 4 ): All patches are ordered along the SFC. We cut this sequence
f patches into segments such that each rank gets exactly one 
egment hosting roughly the same number of patches. As the Peano 
FC is continuous, the set of patches per rank form a connected
ubdomain of the computational domain which does not o v erlap
ith any subdomain handled on another rank. Per rank, we apply

he SFC splitting once more such that each thread per rank obtains
ts own subdomain: The patches within the computational domain 
re first distributed among the ranks and each rank then distributes
ts patches once more among the threads. This gives us a two-level
on-o v erlapping MPI + OpenMP parallelization. 
Our realization with patches supplemented with a halo of width 

ne allows each thread to run through the mesh, and to update all of its
atches independently of the other ones. After this mesh traversal, the
alo layers are copied o v er for neighbouring patches of the same size,
alo finite volumes o v erlapping with coarser resolution patches are
pdated due to a linear interpolation, while halo volumes o v erlapping
ith finer resolutions are updated through averaging over the finer 
olumes. We map the individual patch updates per thread on to
 task formalism (Li et al. 2022 ) and process the patches along
he MPI boundaries prior to other tasks such that the data transfer
equired for the halo updates can o v erlap with further computations
Charrier, Hazel w ood & Weinzierl 2020 ). We assume that the tasks
an compensate for any geometric ill-balancing on the MPI level. 
e do not dynamically rebalance throughout the computation. 
In our experiments, we use four nodes of Durham’s COSMA 7

luster with one MPI rank per compute node. Each node hosts a dual-
ocket Intel Gold 5120 CPU processor. Therefore, each rank splits 
p its domain into 28 further subdomains. Our experiments stick to
 = 3. While this set-up yields a relatively low arithmetic load per
atch compared to the o v erhead that we need to maintain the halo
olumes, it ensures that we can use a rather aggressive coarsening
owards the domain boundaries to reduce the o v erall computational
urden. 

.3 Code units 

o solve the system of equations numerically, it is usually convenient 
o recast them using dimensionless quantities. In the EXAHYPE 2 
mplementation, we adopt the so-called supercomoving coordinates, 
MNRAS 515, 2464–2482 (2022) 
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hich are used in other simulation codes such as RAMSES (Teyssier
002 ). 
The original formulation of this coordinate system could be found

n Martel & Shapiro ( 1998 ). Its idea is to apply the following rescaling
f the variables: 

 ̃

 t ≡ H 0 
d t 

a 2 
, 

˜ x ≡ 1 

a 

x 

L 

, 

˜ ρ ≡ a 3 
ρ( x , t) 
�m0 ρc 

= 

ρ( x , t) 
ρ̄m 

( t) 
, 

˜ p ≡ a 5 
p 

�m0 ρc H 

2 
0 L 

2 
, 

˜ u = a 
u 

H 0 L 

. (75) 

ere, ρc , ρ̄m 

( t) are, respectively, the critical density today and mean
ensity of matter at time t ; L is the comoving size of unit code length;
 t , x , and u denote, respectively, the (physical) time interval, physical
oordinate, and peculiar velocity. We use the quantities with a tilde in
ur code; we therefore call them code unit in the following context. 
The supercomoving coordinate system factors out most of the

ffect from the Hubble expansion, and thus allows us to implement
he original fluid equations ( 16 –19 ) in a static space with just minor
hanges. For the special case γ = 5/3, the only change of the fluid
quations is a recalibration of the gravity term in equation ( 17 ),
hich now needs to be derived from the following code-unit Poisson

quation: 

˜ 
 

2 ˜ � = 

3 

2 
�m0 a( ̃  ρ − 1) , (76) 

here ˜ � is the Newtonian potential in code unit 

˜ 
 = 

a 2 � 

L 

2 H 

2 
0 

. (77) 

olving equation ( 76 ) under spherical symmetry gives us the fol-
owing solution of the Newtonian gravitational force ˜ g ≡ −d ̃  � / d ̃ r 
again, in code unit): 

˜  = −3 

2 
�m0 a 

1 

˜ r 2 

∫ ˜ r 

0 

[
˜ ρ( ̃ r ′ ) − 1 

]
˜ r ′ 2 d ̃ r ′ ≡ −3 

2 
�m0 a 

1 

˜ r 2 
δ ˜ M ( < ˜ r ) 

4 π
, 

(78) 

here we have defined δ ˜ M ( < ˜ r ) to be the total ‘mass perturbation’
ithin radius ̃  r , i.e. the difference between the total mass therein and

he mass in the same region were the density there equal to ρ̄m 

. For
ther fluid equations, we only need to replace physical quantities with
ode quantities directly. For cases γ �= 5/3, extra terms are needed
or supercomoving coordinates (although they are straightforward to
erive), which we do not cover here. 
The generalization to calculate the modified gravitational force

n the SST model is straightforward: we multiply the fifth-force-to-
e wtonian-gravity ratio ξ gi ven in equation ( 48 ) to equation ( 78 )
irectly to obtain the fifth force in the SST model. Most terms in
quation ( 48 ) are constants or time-dependent functions, and the
nly term that needs to be rewritten in code unit is 

1 + � 

y 3 
τ 2 − 1 = 

4 π
3 ρi r 

3 
i ( 1 + � ) 

4 π
3 ρi r 3 

τ 2 − 1 = 

m ( r i , t i ) 
4 π
3 ρi r 3 

τ 2 − 1 , (79) 

here we recall that r i is the initial radius of the fluid element located
t r at time t , and m ( r i , t i ) is the total mass enclosed within r i at the
nitial time t i . As no shell crossing happens during the evolution, the
NRAS 515, 2464–2482 (2022) 
ass within the radius of this fluid element remains the same, which
eans 

1 + � 

y 3 
τ 2 − 1 = 

m ( < r, t) 
4 π
3 ρi r 3 

τ 2 − 1 , (80) 

here m ( < r , t ) denotes the total mass enclosed in radius r at time t >
 i . In our code implementation, the mass is calculated by counting vol-
mes (see Section 3.4 below), and thus m ( < r, t) = 

∑ 

r k ≤r ρk ( t) � 3 k ,
here the subscript k labels the volumes, � k is the cubic size of
olumes k , and ρk ( t ) is the density (all in physical units). Notice that
e have 

ρk ( t) 

ρi 

τ 2 = 

˜ ρk ρH ( t) 

ρi τ−2 
= 

˜ ρk ρH ( t) 

ρH ( t) 
= ˜ ρk (81) 

n the EdS universe. Putting equation ( 81 ) back to equation ( 80 ), we
et 

1 + � 

y 3 
τ 2 − 1 = 

∑ 

r k <r ˜ ρk � 
3 
k 

4 π
3 r 

3 
− 1 = 

∑ 

r k <r ( ̃  ρk − 1) � 3 k 
4 π
3 r 

3 

= 

δ ˜ M ( < ˜ r ) 
4 π
3 ˜ r 3 

, (82) 

here in the second equality we have used 4 π
3 r 

3 = 

∑ 

r k ≤r � 
3 
k , while

n the final equality we have replaced � k and r with their code-unit
xpressions, ˜ � k and ˜ r , which does not change the ratio � 3 k /r 

3 , and
sed δ ˜ M ( < ˜ r ) ≡ ∑ 

˜ r k < ̃ r ( ˜ ρk − 1 ) ˜ � 3 k . Equation ( 82 ) is the final code
xpression that we use in our simulation. 

.4 Simulation settings 

n this subsection, we discuss how we implement the spherical
ollapse scenario on EXAHYPE 2. We describe the hyperbolic
quations and grid setting that are used in the simulations, the initial
onditions and boundary conditions, and how we calculate the total
erturbed mass, δ ˜ M ( < ˜ r ), at arbitrary radius ˜ r . 

.4.1 Equations and grid setting 

n the simulations, we implemented the original conservation form
f the (gravity-driven) Euler equations in code unit: 

∂ ̃  ρ

∂ ̃  t 
+ ∇ · ˜ j = 0 , (83) 

∂ ̃  j 
∂ ̃  t 

+ ∇ ·
(

1 

˜ ρ
˜ j ⊗ ˜ j + ˜ p I 

)
= 

˜ f , (84) 

∂ ˜ E 

∂ ̃  t 
+ ∇ ·

(
1 

˜ ρ
˜ j ( ̃  E + ˜ p ) 

)
= 

1 

˜ ρ
˜ j · ˜ f , (85) 

here ˜ ρ, ˜ j , ˜ E , ˜ p represent the density of mass, momentum, energy,
nd pressure in code unit, respectively, ˜ f = ˜ ρ ˜ g is the force density
ith ˜ g the gravitational acceleration, which is proportional to δ ˜ M ( <

˜  ) / ̃ r 2 . We consequently obtain � Q = ( ̃  ρ, ̃  j , ˜ E ) in equation ( 67 ). 
All simulations we presented in this paper use the same grid set-up

n a cubic box [ −1.5, 1.5] 3 . The maximum refinement level within
he tree formalism is 3, corresponding to a resolution of 243 3 patches
n the finest lev el. Ev ery patch contains 27 volumes again ( p = 3).
e coarsen this mesh once at a distance of 0.5 (in code units) away

rom the origin, and coarsen it once more at 0.7. Fig. 5 illustrates
he AMR refinement pattern we used for the simulation. The exact
efinement pattern is chosen such that it co v ers the refinement
adii. The safety parameter (CFL ratio) we use in equation ( 74 ) is 
 = 0.3. 
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Figure 5. (Colour Online) Left-hand panel: The adaptive Cartesian grid used in our simulations, with patches and volumes that we describe in Section 3.1 
therein. The patches with p = 3 (i.e. every patch contains 3 3 volumes) are separated from each other in the visualization with gaps for clarity. Three levels of 
the grid are shown here. Only one quarter of x - y plane taken from a slice of the simulation box perpendicular to the z-axis is plotted. The diagonal lines are 
visualization artefacts as we use the cubic finite volumes. The refinement transitions are conserv ati v e, i.e. the y are slightly larger than the resolution transitions 
imposed by the refinement strategy. Right-hand panel: The density field (in code unit) on the same slice for a snapshot during a simulation. Some fluctuations 
of the density field could be seen out of the central peak, as we discuss them in Section 3.4.3 . 
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.4.2 Initial conditions 

he simulations shown in this paper start at scale factor a i = 0.001,
nd end around a ≈ 0.3. The simulation domain is initially filled with
ollisional cold gas of γ = 5/3 in critical density (which is unity in
ode units). Our o v erdense seed, the spherical tophat, is placed at the
rigin and is set to have a radius ˜ R i = 0 . 05 and total perturbed mass
˜ M i = 0 . 15. 
The treatment of the initial conditions of the pressure, density, and 

elocity is subtle. Although we should expect a pressureless infall for
ost regions in the simulation box at the beginning, we cannot set a

ero initial pressure numerically. Likewise, although it seems to be 
uite natural to set a zero initial velocity profile within our comoving
oordinate system, we cannot do this in our implementation either. 
oth of these would lead to a ne gativ e pressure in the first time-step.
his is because in this step the energy equation, equation ( 85 ), does
ot update the local energy given the zero momentum (i.e. both the
ux and the source terms are zero in this equation). On the other hand,

he momentum itself is updated normally according to equation ( 84 )
s its source term (the force density) is non-zero. Since we calculate
he pressure using 

˜  = ( γ − 1) 

(
˜ E − 1 

2 
˜ j 2 / ̃  ρ

)
, (86) 

he fact that ˜ j is updated (mostly increased in magnitude) while ˜ E is
ot during the first step can cause an accidental and unphysical drop
f pressure at the end of this time-step, and frequently (for zero initial
ressure, it is al w ays) the pressure turns to be ne gativ e where gravity
s strong, i.e. near the centre. This issue would be worse if we put a
oint mass as the o v erdense seed at the centre, like the one in RAMSES

Teyssier 2002 ), because it leads to an extremely large magnitude of
he gravity force in the adjacent volumes of the point mass. 

To address this ne gativ e pressure issue, our solution is threefold.
irst, we stick to using a tophat o v erdensity rather than a point mass
s our seed, though it harms the solution partially (see the section for
esults below). A tophat initial profile smooths the gravity field and
educes the magnitude of a potential ne gativ e pressure. Secondly, we
et a very small but non-zero value for the pressure initially: it makes
he system more robust to the pressure drop in the first time-step, and
an quickly converge to the correct pressureless solution outside the 
hock later in the simulation. Finally, we introduce a pre-set initial
elocity profile. We assume our momentum field has evolved a small
eriod of (physical) time before the simulation begins, according to 
he initial gravity field: 

˜ j i = � t ̃  g i , (87) 

uch that the energy can get updated as well. These adaptions
uccessfully solve the initial negative pressure issue without the 
xplicit construction of consistent initial condition which does not 
ield unphysical solutions. The freedom of adjusting our initial 
onditions without harming the final self-similarity is expected given 
he convergence of the solution (Alard 2020 ), and we have explicitly
hecked that it is true for our simulation by tuning our initial 
ressure. 

.4.3 Boundary conditions and geometric set-up 

ur set-up to simulate spherical collapses requires free inflow 

oundary conditions. Because we expect � Q to be almost stationary in 
omoving coordinates (or approaching the Hubble flow physically) 
s we mo v e a way from the centre of the computational domain,
omogeneous Neumann boundary conditions can yield the free 
nflow as long as the computational domain is sufficiently large. 
o we ver, such a large domain is computationally inefficient or even
nfeasible, and it is also not clear whether ‘large’ is well defined
n an evolving system: the shock propagates outwards towards the 
order o v er time, thus making it a challenge to use homogeneous
MNRAS 515, 2464–2482 (2022) 
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M

Figure 6. (Colour Online) An illustration of the boundary layout used in 
our simulations with EXAHYPE 2. Outside the boundary of the simulation 
domain, denoted by the thin black line, a layer of ghost volumes (blue squares) 
are set up, and the interested quantities in the ghost volumes, � Q out , depend 
only on the values of these quantities, as well as their first deri v ati ves, in 
the volumes immediately inside the boundary (dark red squares), � Q in . See 
equations ( 88 , 89 ) for the exact details. 
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eumann boundary conditions throughout the entire evolution. We
herefore use the following hybrid scheme: 

� 
 out = 

{
� Q in , ˜ ρin < 1 (88) 

� Q in + 

˜ � in n · lim 

x → ∂�
∇ 

(1) � Q ( x ) , otherwise , (89) 

here � Q in and � Q out denote, respectiv ely, the solution v ectors in the
olumes on the inner and outer sides of the boundary (see Fig. 6 ). The
oundary conditions in EXAHYPE 2 are implemented by specifying
ow the quantities in ghost volumes out of the boundary � Q out are cal-
ulated from ones in their direct neighbours within the domain � Q in .
n most times, we use the extrapolating boundary condition equa-
ion ( 89 ), where the superscript (1) means we use the first-order ap-
roximation of the gradient ∇ 

� Q at x approaching the domain bound-
ry ∂�, multiplied by the distance between the two volumes, ˜ � in . 

The different behaviours of these two types of boundary conditions
re illustrated in Fig. 7 . The linearly extrapolated boundary condition
s more accurate than the homogeneous Neumann one specified by
quation ( 88 ), but it underestimates the momentum inflow from be-
ond the boundary. As a result, the code-unit density at the boundary,

˜ in , will drop to under unity later in the evolution: this is unphysical
NRAS 515, 2464–2482 (2022) 

igure 7. (Colour Online) The different ways to set up the boundary conditions in
ertical dashed line. In both panels, the blue curve illustrates a physical velocity p
eft-hand panel: the homogeneous Neumann boundary condition specified by equ

he vertical line) is assumed to be a constant equal to the velocity value just inside
oundary is o v erestimated, and thus harms the quality of the boundary. Right-han
quation ( 89 ), as indicated by the green dashed line. Its prediction of inflow is mor
wo boundary conditions in our simulations depending on the local density at the b
ecause the density everywhere in this collapse scenario should be
bo v e the critical density. Whenever this happens, we switch to
he homogeneous Neumann boundary condition, equation ( 88 ). The
atter usually o v erestimates the inflow, and thus can pro vide some
compensation’. After the density ˜ ρin increases back to abo v e unity,
e continue using the extrapolating boundary condition again. 
The Finite Volume scheme uses normal boundary conditions

here the normal is axis-aligned. Ho we ver, our solution is spherical-
ymmetric. The boundary condition’s normal alignment thus is
rroneous. Even with equations ( 88 –89 ), we have to ensure that the
omain remains sufficiently large compared to the area of interest,
uch that this misalignment becomes negligible. Our box size is
hosen based on this consideration. Though the shock only reaches
 radius of around 0.5 code units in the final stage of the simulation,
e set the radius of the box to be as large as 1.5 units to suppress

ny boundary pollution. We do not enlarge our box any further as it
onsumes too much computing resources in regions of little interest.
espite the large computational domain, the finite domain size still

imits the maximum simulation time up to which our results are
ot distorted significantly by the tangential boundary errors, as the
olution’s steep gradient mo v es towards the domain boundary. 

Similar arguments hold along resolution transitions. As we
nterpolate linearly along the resolution boundary, our solutions do
ot follow exact spherical symmetry: the mesh and its resolution
ransitions should be spherical, and we should interpolate linearly
long a spherical transition. Yet, our grid is Cartesian. This ‘mis-
lignment’ results in fluctuations or finger patterns (Fig. 5 , right-hand
anel). Our code has two ingredients to mitigate the resulting error:
n the one hand, we use 2:1 balancing (Sundar, Sampath & Biros
008 ), since a more aggressive resolution change would amplify any
rror. On the other hand, we ensure that the ‘first’ (finest to second
nest) resolution transition is sufficiently far away from the region
f interest, i.e. the shock. In return, this implies that the maximum
untime yielding physically admissible results is bounded further, as
ong as we disable AMR – a technique which is intrinsically limited,
s the area of interest expands and thus eventually yields a regular
rid with e xcessiv e memory footprint. This numerical error becomes
pparent once the shock approaches the resolution transition
oundary. In our simulation, we extend the first transition boundary
o about 0.6 code units. This is slightly larger than the final 0.5 code
 the velocity field at the boundary of the simulation domain, indicated by the 
rofile along the x direction, which has a non-zero gradient at the boundary. 
ation ( 88 ), where the velocity field outside the boundary (i.e. to the right of 
 the boundary (the red dashed line). In this case, the inflow from beyond the 
d panel: The first-order extrapolated boundary condition corresponding to 
e accurate than the Neumann case but is underestimated. We combine these 
oundary. 
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Figure 8. (Colour Online) The rescaled density , velocity , and pressure profiles for spherical collapse in an EdS universe, plotted against the radius from the 
centre in code units. Five snapshots of the system at a ≈ 0.022, 0.031, 0.047, 0.076, 0.145 are shown in different colours as indicated by the legends. An outward- 
propagating shock is clearly visible in all three panels. The curves are sampled over the positive direction of the x -axis, but we have checked that for all the simula- 
tions we report in this section the solution only has a very weak dependence on the direction along which we extract it from the simulation domain, see Appendix A . 
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nits which the shock reaches within code time 60 (corresponds to 
 ≈ 0.3). At that time, the shock approaches the transition boundary 
nd thus the numerical error starts to pollute the solutions. As we
ill see in the result section below, the simulation already reaches 

he numerical convergence before a ≈ 0.02, so the current set-up 
rovides sufficient time for us to test the code in the stable evolution 
tage. 

.4.4 Mass integration 

ost of the terms in equations ( 83 –85 ) can be implemented in
XAHYPE 2 directly as part of the Rusanov scheme on Cartesian
eshes we describe abo v e, because the y are all localized variables,

.e. follow up the update pattern of any Finite Volume scheme. 
o we ver, the gravitational force 

 

˜ f | = ˜ ρ| ̃  g | = 

3 

2 
�m ̃

 ρa 
δ ˜ M ( < ˜ r ) 

4 π ˜ r 2 
(1 + ξ ) (90) 

s not localized as we will need the total perturbed mass within radius
˜  . To get δ ˜ M ( < ˜ r ), we construct a mass array { δ ˜ m i } 0 ≤i≤i max which
tores the total perturbed mass values within radii { ̃ r i } 0 ≤i≤i max . Here,

˜  max = ˜ r i= i max is chosen to be the radius of the largest sphere in the
imulation box: half of the domain length. The values of δ ˜ m i are 
alculated by accumulating the mass in all volumes that are within 

˜  i per time-step: 

˜ m i ( < ˜ r i , t) = 

∑ 

˜ r k ≤˜ r i 

[ ̃  ρk ( t) − 1 ] ˜ � 3 k , (91) 

here ˜ � k is the size of the accumulating volume. The plain sum-
ation is consistent with our choice of piecewise constant Finite 
olumes. During the subsequent time-step, we apply the following 

nterpolation rule per volume according to its radius ̃  r for the required 
erturbed mass: 

˜ M ( < ˜ r ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δ ˜ m 0 ̃  r 
3 / ̃ r 3 0 , ˜ r ≤ ˜ r 0 

δ ˜ m i 

(
˜ r i+ 1 −˜ r 
˜ r i+ 1 −˜ r i 

)
+ δ ˜ m i+ 1 

(
˜ r −˜ r i 

˜ r i+ 1 −˜ r i 

)
, ˜ r i < r ≤ ˜ r i+ 1 

δ ˜ m max + 

4 π
3 ˜ ρ( ̃ r max ) 

(
˜ r 3 − ˜ r 3 max 

)
. ˜ r > ˜ r max 

(92) 
he perturbed masses for volumes outside ˜ r max are approximated 
ssuming that the density there is equal to that at ˜ r max . During
ur simulations, the densities in those volumes depart little from 

nity and thus contribute little to the total perturbed mass. This
pproximation is therefore acceptable. More accurate schemes could 
e used in future simulations, such as using a scheme of density
nterpolation that can extend to the furthest corner of the simulation
ox. Within ̃  r max , on the other hand, the accuracy of this interpolation
ule depends on the size and arrangement of the sample array { δ ˜ m i } .
n our simulations, we use a sample array size of 200, and keep our
ample radii { ̃ r i } invariant o v er time. 

 SI MULATI ON  RESULTS  

n this section, we report the simulation results of spherical collapse
cenarios in different gravity models using our new code. To make
omparison to the theoretical predictions we got in Section 2 , we
ill also show results that are rescaled following equations ( 21 –24 ),

fter we restored the quantities in physical unit using equation ( 75 ). 

.1 EdS uni v erse 

e first show the simulation results in the EdS universe. Since gravity 
s standard, we can use equation ( 15 ) as the scaling radius. The
escaled profiles of physics quantities are plotted o v er the radius
oordinates in the code unit (supercomoving coordinates), in Fig. 8 .
e illustrate five snapshots of the system (at scale factor a ≈ 0.022,

.031, 0.047, 0.076, 0.145) from the late part of the simulation
hen the corresponding � is relatively small. The system remains in

table evolution before the numerical issues we reported in the last
ection pollute the solution. A clear outward-propagating shock can 
e seen in the figure. 
The same profiles of quantities are plotted again, but now against

he rescaled radial coordinates λ, in Fig. 9 . The theoretical self-
imilar lines from Section 2 are shown as black dashed lines
or comparison. We can see a clear self-similarity here, as the
escaled simulated quantities have converged during the time period 
onsidered, when the scale factor a increases by a factor of seven. The
oloured vertical lines in the figures are the positions of the tophat
MNRAS 515, 2464–2482 (2022) 
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M

Figure 9. (Colour Online) The rescaled density , velocity , and pressure profiles from the same simulation of the EdS model, plotted against the rescaled radial 
coordinate, λ. The self-similar theoretical prediction (Bertschinger 1985 ) is shown as black dashed lines. The vertical dashed lines with colours indicate the 
locations of the tophat edge at the same five times as shown in Fig. 8 , and the numerical solutions depart from the self-similar prediction within it. This location 
is moving inwards as the rescaling radius r ta increases over time. Convergence over time to the theoretical solution can be observed in the plots. 
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dge at the time of the corresponding snapshots, within which the
ensity and pressure solution deviate from the self-similar solution
nd flatten: this is expected as the gas within the tophat does not
xperience the full gravity from the mass perturbation anymore.
he radius of this edge is shrinking in the rescaled plots o v er time
ecause the turnaround radius that is used to define λ increases as
ime evolves. 

The rescaled solutions agree with the theoretical predictions quite
ell, especially for the pre-shock solutions of the density and
elocity. Yet, there are some deviations from the self-similar solution,
otably a shift of the shock position. Because of this, the infall
elocity of the gas just outside the shock is lower than the theoretical
rediction. This is a common numerical artefact caused by volumes
ith finite widths, which cannot exactly resolve the infinitesimally

hin shock. We have checked that the agreement with the self-similar
rediction impro v es as we use finer volumes. A detailed conv ergence
tudy is beyond scope here. 

Another factor that may have contributed to the difference
etween theory and simulation is that the theoretical solution here is
btained under the assumption of � 	 1, and this is not well satisfied
n the simulations. The different shells of gas have different initial
adii r i and corresponding values of � , with the outer shells having
arger r i and therefore smaller � , and vice versa. The outer shells
lso collapse to the shock at a later time. We note that the outer shells
hat collapse to the shock at later stages of the simulations usually
ave � ≈ 0.1, and the inner shells have even larger � . The difference
etween these values of � 	 1 might affect the accuracy of the
imulation results. This claim is supported by the time convergence
f the profiles in Fig. 9 towards the self-similar solutions. Ho we ver,
t is not clear to what extent letting the simulation run for longer, so
hat shells with ever larger r i will fall to the shock, helps here, since
ome of the inaccuracy of the simulation results is due to numerical
issipation. Additionally, as we explained in Section 3.4.3 , the
aximum runtime yielding physically admissible results is bounded,

nd simulations after a longer time will begin to depart from the
elf-similar solution generally. 

We next study the effect of hybrid boundary condition scheme
ntroduced in Section 3.4.3 . Fig. 10 gives the tail part of the
ensity profiles of three simulations which are identical except for
he implementations of the boundary conditions. The three panels
NRAS 515, 2464–2482 (2022) 

i  
orrespond to the three types of boundary conditions mentioned
bo v e, respectiv ely, homogeneous Neumann (outflow), pure linear
xtrapolation, and the hybrid scheme. A clear abnormal uprising of
ensity near the boundary can be seen in the homogeneous case (the
rst panel), as it o v erestimates the inflow from beyond the boundary.
his effect would ‘propagate’ inwards and eventually pollute the
olution, making it unstable. On the other hand, the density drops to
nder unity (or the critical density in physical units) when we use
he extrapolated boundary condition (the second panel), leading to
 ne gativ e density later in the simulation. Using the hybrid scheme
the third panel), we manage to keep a relatively stable and smooth
ensity evolution near the boundary throughout the simulation. 

.2 SST models 

n this subsection, we report the simulation results of the SST model
ntroduced in Sections 2.1 and 2.2.2 , with β = 1.0 and various
alues of the screening parameter ζ . For a clear comparison with
he standard gravity, we first rescale our MG results using the same
urnaround radius formulation equation ( 15 ), following what we did
rst in Section 2.3 . As the rescaling radius is identical in the different
ravity models, the differences after the rescaling also represent the
ifference in the real evolution, thus showing the effects of MG and
he screening mechanism. 

The results at a ≈ 0.076 for models with β = 1.0 and ζ = 0, 1,
, 10, 50, 100 are summarized in Fig. 11 . Those results agree with
hat one should expect for an enhanced gravity force and presence
f screening: for the non-screening case ( ζ = 0), in which gravity is
onstantly enhanced in time and space, a stronger shock is observed
nd it also happens at a larger radius than in EdS. In the other cases,
s the screening becomes stronger and stronger (i.e. increasing ζ ),
he results approach that of standard gravity in an EdS universe. 

One may have noticed that we require a bigger ζ to achieve a
imilar screening effect, compared to Fig. 1 . This is mainly due to
he fact that the parameter � , which characterizes the mean initial
 v erdensity density within some given initial radius r i , takes different
alues at the different initial radii co v ered by a real simulation, while
he theoretical profiles are obtained assuming a fixed � , e.g. � =
.001. To get rid of the � dependence in our results, we use the
dea of rescaling using the true turnaround radius as described in
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Figure 10. (Colour Online) The tail parts of the rescaled density profiles from three EdS simulations which implement different boundary conditions but are 
otherwise identical. The three panels, from left to right, show the results from using homogeneous Neumann (outflow), pure extrapolated and hybrid boundary 
conditions, respectively. Only in the hybrid case does the profile near the boundary remain stable and consistent with the theoretical prediction (the dashed line). 
The other two cases either o v erestimates or underestimates the density near the boundary, leading to an eventual crash of the simulation when the error near the 
boundary propagates into the central region of the simulation domain (see the purple and red solid lines in the left two panels). 

Figure 11. (Colour Online) The rescaled quantities curves in the SST model introduced in Sections 2.1 and 2.2.2 , with β = 1.0 and ζ = 0, 1, 5, 10, 50, 100, at 
the time-step when a ≈ 0.076. The profiles in an EdS universe are also illustrated here for a comparison (blue solid lines). The case of ζ = 0 corresponds to a 
model with a constant (in space and time) enhancement of Newton’s constant, while ζ > 0 introduces the Vainshtein screening effect which grows with ζ . It is 
therefore as expected that the case with a constant enhancement of gravity ( ζ = 0) deviates most from the EdS result, and results of other cases lie in between. 
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ection 2.3 . The difference is that this time we do not need a ‘re-
escaling’: after we restore the profile quantities in physical units, we 
nd the real turnaround radius directly by its physical meaning, i.e. 
e locate the radius where the physical velocity crosses zero. This
ethod can be applied to all models including the EdS, which we

ave checked explicitly to give the same result as in the subsection
bo v e. After we located this real turnaround radius for simulations
ith SST model, we use this value for our rescaling. The result of the

ame simulations and same timestamp in this new rescaling scheme 
hen are plotted as the solid lines in Fig. 12 , and their theoretical
redictions (as shown in Fig. 3 ) are o v erplotted as the dashed lines
ith the same colour scheme. In the figure titles, we have used primes

o indicate the quantities calculated using the numerically determined 
urnaround radius, r ′ ta . 

Just like the theoretical results we got in Section 2.3 , the new
escaled solutions are close to that in EdS univ erse. The y are broadly
n line with the theoretical predictions as well. The shock in SST
odel happens at a slightly smaller radius, and the velocity in the
as shell just outside the shock has a bigger magnitude. This result
s possibly caused by the fact that the gravitational force is stronger
n the SST model, so that the collapse is also stronger and faster. The
ualitative trend is also as expected, as the curves for the models with
creening are between the ones of EdS and a constant enhancement of
ewton’s constant ( ζ = 0). Given that the real physical evolutions of

hese models in the simulation are quite different (cf. Fig. 11 ), these
esults demonstrate the reliability of EXAHYPE 2 engine to carry out
oth standard and MG simulations, and support the idea that self-
imilarity can be found (at least as a very good approximation) in
ore general gravity models beyond EdS as well. 

 DI SCUSSI ON  A N D  C O N C L U S I O N  

o summarize, we have studied the spherical collapse of collisional 
as in both an EdS universe and SST gravity model in this paper.
e have derived self-similar solutions, for the first time, for some
MNRAS 515, 2464–2482 (2022) 
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M

Figure 12. (Colour Online) The profiles of the same quantities as shown in Fig. 11 (solid lines) for the SST model with different parameters (see legends), now 

rescaled using the real turnaround radius r ′ ta as described in Section 2.3 . The quantities with a prime are calculated using this new rescaling radius. We also plot 
the theoretical self-similar predictions described in Section 2.3 for each case, as dashed lines with the corresponding colours. 
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pecial cases of the latter class of models. The existence of self-
imilar solutions in spherical collapse scenarios is non-trivial: for
xample, while the EdS model admits a self-similar solution, this is
ost if the model includes a cosmological constant. This is even more
rue for MG models, in which the law of gravity may be modified in
omplicated time- and spatial-dependent ways. Indeed, we have tried
o search for self-similar solutions in several classes of MG theories
hat feature certain screening mechanisms. Chameleon-type models
Khoury & Weltman 2004a , b ) do not admit self-similar solutions,
ecause the fifth force there is not only scale dependent but also
nvironment dependent. We have not found self-similar solutions for
-mouflage-type models (Babiche v, Def fayet & Ziour 2009 ; Brax,
urrage & Davis 2013 ) either: in this model, the fifth force is given
y 

 = βK 
d ϕ 

d r 
, (93) 

here βK is a parameter describing the coupling strength of the scalar
eld ϕ with matter, which is usually taken as a constant or function
f time. The radial gradient d ϕ/d r can be schematically obtained by
olving 

 

(
d ϕ 

d r 

)
∝ βK 

m ( < r) 

r 2 
∝ βK 

r ta 

t 2 

M( λ) 

λ2 
, (94) 

here K ( ·) is a non-linear function, and r ta is again the EdS expression
f the turnaround radius, equation ( 15 ). For the fifth force to also
espect self-similarity, it should be possible to express it as 

 = F ( λ) 
r ta 

t 2 
, (95) 

here F is a function of λ only. This is satisfied if K ( ·) is a linear
unction and βK is a constant, but this simply corresponds to a model
ith a constant enhancement of Newton’s constant, identical to the
ST variant with ζ = 0 considered abo v e. F or general K ( ·), one has

o require βK to depend on both r ta (and through which also depend
n the initial radius r i and o v erdensity � ) and t to satisfy the abo v e
ondition. Even for the SST model we considered abo v e, demanding
 self-similar solution places some constraints on certain details, in
articular the requirement that r c becomes a time-dependent function
hich grows at the same rate as the horizon size of the EdS universe.
NRAS 515, 2464–2482 (2022) 
he existence of self-similar solutions in specific models offers us a
ay to test our numerical code for models other than EdS. 
The self-similar solutions we obtained for the SST model behave

s one would expect for an enhanced gravity with the Vainshtein
creening mechanism at work. For example, we see that the shock
appens at a larger radii in the SST variant with ζ = 0, and the
nfall velocity is larger outside the shock, compared with EdS, as a
esult of a stronger gravitational collapse. For the other SST variants
here ζ > 0, the results generally lie between EdS and ζ = 0,

ndicating a suppressed fifth force, and the suppression effect is larger
or larger ζ . It is notable that, despite the substantial differences in the
volutions and solutions of the different gravity models considered,
fter the (more ‘proper’) rescaling using the true turnaround radius
f individual models, the solutions in the dif ferent SST v ariants are
ll very close to that in the EdS model with standard gravity (though
heir agreement is not perfect). We also notice that, after this proper
escaling, the self-similar solutions in the SST models depend very
eakly on � , as also happens in EdS. Apparently, we should test

hese observations for other types of gravity models too. If they
old there as well, this is an interesting indication that the properly
escaled solutions in different gravity models are close to each other,
hich in turn implies that self-similarity should hold approximately,

ven though not exactly, in generic models. We leave a more detailed
xploration of this possibility to future work. 

Behind our new physical insights is a new implementation of
osmological hydrodynamical simulations of the spherical collapse
cenario for different gravity models, based on the publicly available
yperbolic PDE engine EXAHYPE 2. We have described various
echnical details in our implementation, including the initial and
oundary conditions which must be properly set up in order to get
table and correct evolutions. We find that the numerical simulations
f the same EdS and SST models as introduced abo v e yield good
greements with the theoretical predictions we derived. This thus
ot only supports our findings on the self-similarity in the consid-
red models, but also serves as a validation of the reliability and
orrectness of our EXAHYPE 2 implementation. 

By comparing our theoretical predictions to the simulation results,
e find that, although to a large degree the code is capable of handling

he collapse scenarios in different gravity models, there are still
ome inaccuracies in the current simulation results, in particular
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t and around the shock. The observed shift and weakening of
he shock are likely caused by numerical dissipation, which may 
e suppressed by increasing the spatial and temporal resolutions. 
here are several possible ways of doing this. First, we are currently
sing a simple Finite Volume formalism which employs a generic 
iemann solver. This scheme can be further extended to higher order 

ormalisms, e.g. Discontinuous Galerkin methods in combination 
ith Runge–Kutta schemes or ADER-DG (Zanotti et al. 2015 ). 
hose schemes are in principle compatible with our scenarios, 
traightforward to implement, and could work properly to enhance 
he resolutions, but it remains an open question if these methods 
re well suited to capture the steep gradients near the shock. We
ould also directly increase the resolution of our simulations, but 
his comes at additional runtime cost. Future work will look at the
utsourcing of the individual patches to GPUs. This will provide us
ith the opportunity to work with significantly finer resolutions and 
 much higher efficienc y. F or the temporal side, we need to check if
ocal time-stepping or subcycling help to reduce the vulnerability of 
he current explicit time-stepping scheme to numerical dissipation. It 
ay also help to use more accurate Riemann solvers, as the current
usano v solv er only ‘reacts’ to the biggest eigenvalue of the system,
f. equation ( 72 ), so that it does not preserve the characteristics of
ll five evolving quantities well if they propagate with different wave 
peeds. 

With a working hydrodynamical simulation code at hand, where 
ew models of gravity can be straightforwardly implemented, a 
atural next step is to run simulations for more realistic MG models
hat do not have self-similar solutions, including the original DGP 

odel, the K-mouflage model, and the chameleon model. For the 
atter, we may need to either add a multigrid solver for the scalar field,
r adopt some approximate solutions such as the thin-shell solution. 
n a future project, we will compare the collapse of collisional gas in
hese different models in detail. If the abo v e speculation, namely the
pherical solutions rescaled by the true turnaround radii of models 
re approximately the same in different cosmological models, turns 
ut to be correct, then the differences in the physical solutions of
hese models can be largely ascribed to the differences in their 
urnaround radii, which might offer a simple way to model the 

G effects. In addition, we plan to add more physical processes,
uch as radiative cooling (e.g. Abadi et al. 2000 ), in the code, to
nderstand how they interfere with the effects of a modified law of
ravity. Altogether, these will hopefully offer us new insights into 
he behaviour of gas, and hence the galaxy formation process, in MG

odels. 
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PPENDI X  A :  SPHERI CAL  SYMMETRY  O F  

H E  SOLUTI ON  

n this appendix, we show that our simulation is highly close to exact
pherical symmetry during the stable evolution phase. In Fig. A1 ,

e plot the rescaled profiles of the same three physical quantities
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shown in different colours) from the same simulation. The sampling
irections are all on the x - y plane from a slice of the simulation box
erpendicular to the z-axis. The coordinates shown in the legend
re the starting and ending points of the sampling axis, while the
lack dashed line is the theoretical self-similar prediction plotted for
omparison. 
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he small region immediately inside the shock in the velocity profile
middle) panel, where the curves in difference directions deviate from
ach other slightly and the profile in the diagonal direction (brown
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attern (though the simulation result has a different amplitude due
he reason explained in the main text). In particular, we note that the
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