David Parker david.parker@durham.ac.uk
Emeritus Professor
Comparative analysis of lanthanide excited state quenching by electronic energy and electron transfer processes
Parker, David; Fradgley, Jack D.; Delbianco, Martina; Starck, Matthieu; Walton, James W.; Zwier, Jurriaan M.
Authors
Jack D. Fradgley
Martina Delbianco
Matthieu Starck
Dr James Walton james.walton@durham.ac.uk
Associate Professor
Jurriaan M. Zwier
Abstract
The relative sensitivities of structurally related Eu(III) complexes to quenching by electron and energy transfer processes have been compared. In two sets of 9-coordinate complexes based on 1,4,7-triazacyclononane, the Eu emission lifetime decreased as the number of conjugated sensitising groups and the number of unbound ligand N atoms increased, consistent with photoinduced electron transfer to the excited Eu(III) ion that is suppressed by N-protonation. Quenching of the Eu 5D0 excited state may also occur by electronic energy transfer, and the quenching of a variety of 9-coordinate complexes by a cyanine dye with optimal spectral overlap occurs by an efficient FRET process, defined by a Förster radius (R0) value of 68 Å and characterised by second rate constants in the order of 109 M−1 s−1; these values were insensitive to changes in the ligand structure and to the overall complex hydrophilicity. Quenching of the Eu and Tb excited states by energy transfer to Mn(II) and Cu(II) aqua ions occurred over much shorter distances, with rate constants of around 106 M−1 s−1, owing to the much lower spectral overlap integral. The calculated R0 values were estimated to be between 2.5 to 4 Å in the former case, suggesting the presence of a Dexter energy transfer mechanism that requires much closer contact, consistent with the enhanced sensitivity of the rate of quenching to the degree of steric shielding of the lanthanide ion provided by the ligand.
Citation
Parker, D., Fradgley, J. D., Delbianco, M., Starck, M., Walton, J., & Zwier, J. M. (2022). Comparative analysis of lanthanide excited state quenching by electronic energy and electron transfer processes. Faraday Discussions, 234, 159 - 174. https://doi.org/10.1039/d1fd00059d
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 5, 2021 |
Online Publication Date | Nov 5, 2021 |
Publication Date | 2022 |
Deposit Date | Sep 15, 2022 |
Publicly Available Date | Sep 15, 2022 |
Journal | Faraday Discussions |
Print ISSN | 1359-6640 |
Electronic ISSN | 1364-5498 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 234 |
Pages | 159 - 174 |
DOI | https://doi.org/10.1039/d1fd00059d |
Public URL | https://durham-repository.worktribe.com/output/1194359 |
Files
Published Journal Article (Advance online version)
(979 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/3.0/
Copyright Statement
Advance online version This work is licensed under a Creative Commons Attribution 3.0 Unported License.
You might also like
Water-soluble copper pyrithione complexes with cytotoxic and antibacterial activity
(2023)
Journal Article
Biotinylated selenocyanates: Potent and selective cytostatic agents
(2023)
Journal Article
Enolate SNAr of unactivated arenes via [(η6-arene)RuCp]+ intermediates
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search