Willem Elbers willem.h.elbers@durham.ac.uk
Postdoctoral Research Associate
Higher order initial conditions with massive neutrinos
Elbers, Willem; Frenk, Carlos S; Jenkins, Adrian; Li, Baojiu; Pascoli, Silvia
Authors
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
Professor Adrian Jenkins a.r.jenkins@durham.ac.uk
Professor
Professor Baojiu Li baojiu.li@durham.ac.uk
Professor
Professor Silvia Pascoli silvia.pascoli@durham.ac.uk
Visiting Professor
Abstract
The discovery that neutrinos have mass has important consequences for cosmology. The main effect of massive neutrinos is to suppress the growth of cosmic structure on small scales. Such growth can be accurately modelled using cosmological N-body simulations, but doing so requires accurate initial conditions (ICs). There is a trade-off, especially with first-order ICs, between truncation errors for late starts and discreteness and relativistic errors for early starts. Errors can be minimized by starting simulations at late times using higher order ICs. In this paper, we show that neutrino effects can be absorbed into scale-independent coefficients in higher order Lagrangian perturbation theory (LPT). This clears the way for the use of higher order ICs for massive neutrino simulations. We demonstrate that going to higher order substantially improves the accuracy of simulations. To match the sensitivity of surveys like DESI and Euclid, errors in the matter power spectrum should be well below 1 per cent. However, we find that first-order Zel’dovich ICs lead to much larger errors, even when starting as early as z = 127, exceeding 1 per cent at z = 0 for k > 0.5 Mpc−1 for the power spectrum and k > 0.1 Mpc−1 for the equilateral bispectrum in our simulations. Ratios of power spectra with different neutrino masses are more robust than absolute statistics, but still depend on the choice of ICs. For all statistics considered, we obtain 1 per cent agreement between 2LPT and 3LPT at z = 0.
Citation
Elbers, W., Frenk, C. S., Jenkins, A., Li, B., & Pascoli, S. (2022). Higher order initial conditions with massive neutrinos. Monthly Notices of the Royal Astronomical Society, 516(3), https://doi.org/10.1093/mnras/stac2365
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 16, 2022 |
Online Publication Date | Sep 20, 2022 |
Publication Date | 2022 |
Deposit Date | Oct 26, 2022 |
Publicly Available Date | Oct 26, 2022 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 516 |
Issue | 3 |
DOI | https://doi.org/10.1093/mnras/stac2365 |
Public URL | https://durham-repository.worktribe.com/output/1188135 |
Files
Published Journal Article
(1.8 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
You might also like
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inference
(2023)
Journal Article
Upscaling ExaHyPE – on each and every core
(2023)
Report
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search