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ABSTRACT

The discovery that neutrinos have mass has important consequences for cosmology. The main effect of massive neutrinos
is to suppress the growth of cosmic structure on small scales. Such growth can be accurately modelled using cosmological
N-body simulations, but doing so requires accurate initial conditions (ICs). There is a trade-off, especially with first-order ICs,
between truncation errors for late starts and discreteness and relativistic errors for early starts. Errors can be minimized by
starting simulations at late times using higher order ICs. In this paper, we show that neutrino effects can be absorbed into
scale-independent coefficients in higher order Lagrangian perturbation theory (LPT). This clears the way for the use of higher
order ICs for massive neutrino simulations. We demonstrate that going to higher order substantially improves the accuracy of
simulations. To match the sensitivity of surveys like DESI and Euclid, errors in the matter power spectrum should be well below
1 per cent. However, we find that first-order Zel’dovich ICs lead to much larger errors, even when starting as early as z = 127,
exceeding 1 per cent at z = 0 for k > 0.5 Mpc~! for the power spectrum and k > 0.1 Mpc~' for the equilateral bispectrum in
our simulations. Ratios of power spectra with different neutrino masses are more robust than absolute statistics, but still depend

on the choice of ICs. For all statistics considered, we obtain 1 per cent agreement between 2LPT and 3LPT at z = 0.

Key words: neutrinos —methods: numerical —dark matter — large-scale structure of Universe —cosmology: theory.

1 INTRODUCTION

The neutrino content of the Universe, €, = m,/(93 eV h?),
becomes a powerful probe for cosmology once the implied neutrino
masses are confronted with data from neutrino oscillations (Esteban
et al. 2020) and the kinematics of B-decay (Aker et al. 2021). A
non-zero detection of 2, would be consequential for fundamental
physics. It would confirm that a background of relic neutrinos
survived until the epoch of structure formation, provide insight
into the origin of neutrino mass, and constrain the search for dark
matter and dark sectors. Oscillation experiments provide a lower
bound of Y m, > 0.058 eV, while cosmology provides upper bounds
of > m, < 0.15 eV or better assuming Lambda cold dark matter
(ACDM; Choudhury & Hannestad 2020; Palanque-Delabrouille
et al. 2020; Di Valentino, Gariazzo & Mena 2021; Porredon et al.
2021), with ongoing and future surveys promising significant further
improvement. Planck and future cosmic microwave background
experiments, together with large-scale structure surveys like DESI,
Euclid, and Vera Rubin, could achieve sensitivities in the 0.01—
0.02 eV range (Hamann, Hannestad & Wong 2012; Abazajian
et al. 2015; Brinckmann et al. 2019; Chudaykin & Ivanov 2019).
Such small shifts in neutrino mass correspond to tiny 0.5 per cent—
1.5 per cent effects on the power spectrum of matter fluctuations on
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0.1-1 Mpc~! scales, requiring theoretical predictions that are at least
as accurate.

With this goal in mind, many groups have studied the effects of
massive neutrinos on large-scale structure. At early times and on
large enough scales, perturbation theory is the method of choice for
this purpose. Cosmological perturbation theory (Bernardeau et al.
2002) is essential for providing analytical insight and a necessary
complement to more expensive numerical simulations. The effects
of neutrinos on the non-linear matter power spectrum were first
calculated at one-loop by Saito, Takada & Taruya (2008) and
Wong (2008). Subsequent work has dealt more realistically with
the neutrino phase-space distribution (Shoji & Komatsu 2010; Blas
etal. 2014; Dupuy & Bernardeau 2014; Fiihrer & Wong 2015; Levi &
Vlah 2016; Chen, Upadhye & Wong 2021), which parallels similar
efforts on the numerical simulations side. Other advances were made
by including neutrinos in the effective field theory of large-scale
structure (Senatore & Zaldarriaga 2017; Colas et al. 2020) and
using time renormalization group perturbation theory (Lesgourgues
etal. 2009; Upadhye 2019), which improved agreement with N-body
simulations. More closely related to this work, Wright, Winther &
Koyama (2017) extended the hybrid COLA simulation method to
cases with massive neutrinos using second-order Lagrangian pertur-
bation theory (2LPT) and Aviles & Banerjee (2020) incorporated
non-linear neutrino effects in LPT up to third order (3LPT). On
the numerical simulations side, where higher order LPT has been
used to great effect to produce accurate initial conditions (ICs) for
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conventional simulations without massive neutrinos (Scoccimarro
1998; Sirko 2005; Crocce, Pueblas & Scoccimarro 2006), neutrino
effects have not been included and higher order LPT is therefore
rarely used for neutrino simulations (but see Brandbyge et al. 2008;
Yeche et al. 2017). In this work, we propose a novel scheme for
generating nLPT ICs for neutrino simulations based on all-order
recursive solutions in the small-scale limit. We also generate ICs
based on a full calculation of scale-dependent neutrino effects in
2LPT, dealing with frame-lagging terms following Aviles & Banerjee
(2020), and find near perfect agreement with our scheme in the final
simulation product. This demonstrates that neutrino effects can be
implemented beyond first order by working in the small-scale limit,
paving the way for accurate neutrino simulation ICs.

N-body simulations are used to solve for the non-linear grav-
itational dynamics of matter on small scales, where perturbation
theory fails. Cosmological simulations with ICs based on LPT were
pioneered by Frenk, White & Davis (1983), Klypin & Shandarin
(1983), and Efstathiou et al. (1985). Mixed dark matter simulations
with sub-electronvolt neutrinos were first carried out by Brandbyge
et al. (2008), Brandbyge & Hannestad (2009), and Viel, Haehnelt &
Springel (2010). We refer the reader to Angulo & Hahn (2022)
for a review of neutrino simulation methods. As with perturbation
theory, the accuracy of modern surveys places stringent demands
on simulations, popularly expressed as a requirement for 1 per cent
accurate calculations of the matter power spectrum (Schneider
et al. 2016). A major source of uncertainty concerns the interface
between perturbation theory and simulation, in the form of ICs,
and associated transients (Scoccimarro 1998). We may distinguish
two major sources of uncertainty related to the choice of ICs
(Efstathiou et al. 1985; Michaux et al. 2021). The first arise from
discrepancies between the ICs and the actual non-linear solution at
the initial time. When the solution is calculated perturbatively at
order n, this uncertainty can be understood as the truncation error
introduced by neglecting terms of order n + 1 and greater. The
second source of uncertainty relates to discreteness effects that build
up over time as the continuous fluid equations are solved by means
of a discrete particle representation (Marcos et al. 2006; Garrison
et al. 2016). There is a tension between these two, as early starts
minimize truncation errors but entail larger discreteness errors, while
late starts do the opposite. For example, the first-order solution of
Zel’Dovich (1970) has the largest possible truncation error, driving
practitioners to start simulations early when higher order corrections
are small. However, such simulations manifest a greater dependence
on particle resolution due to discreteness errors. While such errors
can be corrected (Garrison et al. 2016), this reasoning provides strong
motivation for using higher order ICs at late times (Michaux et al.
2021).

Neutrinos complicate this picture in two ways. First, neutrinos
introduce an additional length-scale into the problem. Due to their
large thermal velocities, neutrinos free stream out of potential wells,
otherwise stated in terms of a suppression of clustering on scales
smaller than a typical free-streaming length (Lesgourgues & Pastor
2006). This in turn causes a scale- and time-dependent suppression
of dark matter and baryon clustering that must be accounted for in
the ICs. Zennaro et al. (2017) showed how to incorporate such scale
dependence in a first-order back-scaling procedure, but a consistent
framework for higher order ICs has thus far been lacking. We note
that during the review of our manuscript, Heuschling, Partmann &
Fidler (2022) presented a recipe for second-order neutrino ICs, also
using a back-scaling procedure. The second complication is that
late-time observables are more strongly correlated with the ICs and
less determined by the internal structure of haloes, when clustering
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is suppressed on small scales. This means that simulations with
different neutrino masses are affected by errors to different degrees,
contaminating ratios such as the suppression of the matter power
spectrum. We will show that such ratios are more robust than absolute
statistics, but still depend on the choice of ICs on small scales.

The paper is organized as follows. We begin by summarizing
our recipe for generating higher order ICs for neutrino simulations in
Section 2. The second part of the paper is concerned with a derivation
of the higher order solutions necessary for ICs, starting with the setup
in Section 3, limiting solutions at all orders in Section 4.1, and the
full second-order solution in Section 4.2. The final third of the paper
contains a systematic analysis of higher order ICs in Section 5.
Finally, we conclude in Section 6. Throughout this paper, we use a
default neutrino mass sum of > _m, = 0.3 eV to showcase our results,
except where indicated otherwise.

2 N-BODY INITIAL CONDITIONS

‘We begin by outlining our approach for setting up for three-fluid ICs
with cold dark matter (c), baryons (b), and neutrinos (v). Initially, we
deal with a single cold fluid, described in terms of the mass-weighted
density contrast and velocity,

dep = f08c+fb8ba (D

Vep = fcvc + fbvba (2)

where f. = Q/(2c + Q) and f, = 1 — f.. In a final step, the
cold fluid is separated into two components with distinct transfer
functions. Our approach is based on a growing mode solution of the
LPT equations in the small-scale limit, motivated by the hierarchy
between the neutrino free-streaming scale and the non-linear scale, kg
< ky, at the redshifts relevant for ICs. In Section 5, we confirm that
this is an excellent approximation suited for precision simulations.
The recipe boils down to the following steps:

(i) Compute a back-scaled transfer function §,(k)

(i) Compute particle displacements via equations (3)—(11)

(iii) Compute particle velocities via equations (12)—(14)

(iv) Perturb particle masses and velocities via equations (15)—(19)

These steps can be performed using a modified version of the
MONOFONIC code (Michaux et al. 2021), which we have made
publicly available.! We briefly discuss the steps in order and then
deal with possible extensions in Sections 2.5 and 2.6.

2.1 Transfer functions and back-scaling

In this paper, we follow the commonly used back-scaling approach.
This approach begins by choosing a pivot redshift, typically z = 0,
where the simulation should reproduce linear theory on the largest
scales. This is necessary because conventional N-body codes solve
Newtonian equations and therefore fail to capture the large-scale
general relativistic dynamics in which matter and radiation are
coupled through the Einstein—Boltzmann equations. We note that
there exist alternative solutions to this problem (Brandbyge et al.
2017; Fidler et al. 2017; Fidler & Kleinjohann 2019; Tram et al.
2019; Partmann et al. 2020) as well as fully relativistic N-body codes
(Adamek, Durrer & Kunz 2017; Barrera-Hinojosa & Li 2020a, b),
which can avoid it altogether. In the back-scaling procedure, one uses

1Up-to-date links to the software referenced in this paper are maintained at
https://www.willemelbers.com/neutrino_ic_codes/.
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alinear Einstein—Boltzmann code such as CLASS (Lesgourgues 2011)
or CAMB (Lewis & Challinor 2011) to calculate the density transfer
functions for each fluid species at zP*, which are then scaled back to
the starting redshift of the simulation using the exact linear dynamics
of the Newtonian code. For ACDM without neutrinos, this amounts
to rescaling the dark matter transfer function by a constant growth
factor ratio D(z;)/D(zP™).

Adding massive neutrinos makes the linear solution scale-
dependent, precluding a simple rescaling factor. Nevertheless, the
same philosophy can be applied by solving the Newtonian dynamics
of an N-body code with massive neutrinos at linear order. Following
Zennaro et al. (2017), we do this using a first-order Newtonian fluid
approximation (Shoji & Komatsu 2010; Blas et al. 2014), but see
also Heuschling et al. (2022) for a relativistic formulation. This back-
scaling method for neutrino cosmologies was first implemented in
the REPS code. To streamline the procedure for the end user and to
reduce the potential for human error, we built a lightweight back-
scaling library ZWINDSTROOM that interfaces directly with CLASS
and the ICs generator MONOFONIC. The final result of these steps is
a rescaled density transfer function 8.,(k) = Dep(k, 2;)/Dep(k, zPY)
- 8ep(k, 2PV for a cold dark matter-baryon fluid (cb), where the
growth factor ratio is computed with ZWINDSTROOM and the transfer
function with CLASS.

2.2 Displacements

The displacement field, ¥y = x — g, relates the particle position x
to the corresponding Lagrangian coordinate ¢. To determine ¥, we
first obtain the linear potential by solving

V2p(q) = 8n(g). A3)

Unless indicated otherwise, V = V,. We observe that o is not the
gravitational potential, which also includes a neutrino contribution,
but a notation that reflects the fact that we are solving for the
displacements of cb fluid particles. Our fast approximate 3LPT
(Buchert 1994; Bouchet et al. 1995; Melott, Buchert & Weiss
1995) scheme for the displacement field in the presence of massive
neutrinos has the simple form

¥ =9V + oy + CyCY + GO + Gy, )

where C, are scale-independent factors that capture the absence of
neutrino perturbations in the small-scale limit, C! = C,/C;, and ¢
have the same form in terms of ¢ as in ACDM. In the notation of
Michaux et al. (2021), these are given by

3
PO = _veh y® = —7V¢(2), )
Gor _ L g Gy Gk 100 Ghy6o _ 1 6)
Yol = S VeRUYRY = — = VetY Y = SV x AV, (6)
3 21 7
with higher order potentials given by
1
Vi =2 [ B (pf,'j?wfl.‘j?] , %)
V23 = det ¢, @®)
1
vt = = [oD0 = o0l ©
VZA® = Vo x Vel (10)

where commas denote partial derivatives and we sum over repeated
indices. In Section 4.1, we show that C, can be expressed in terms
of the neutrino fraction, f, = €,/Qy,. The correction, as it turns out,

Higher order neutrino ICs 3823
is small and approximately linear in f,,:
2nf,
ChE214+ —r0. 11
+ 5(2n + 3) ()

For a minimal neutrino mass sum of Y m, = 0.06eV, one finds C,
— 1 =35 x 10~*. For our fiducial mass sum of > m, = 0.3eV, it
is 0.3 per cent. At Y m, = leV, the effect is about 1 per cent. The
third-order correction Cj is larger, but since ¥ is suppressed by
another power of the growth factor, the overall impact is smaller.

2.3 Velocities

The velocity field is v, = dy/dr. Given a satisfactory scheme
for computing the displacement field, the time derivative can be
evaluated numerically. This is our preferred method, since it requires
no additional approximations. However, a faster method that avoids
calculating higher order terms more than once is to use the asymptotic
logarithmic growth rate

dlog Doy(k, a)

o= lim ————2~" "~ 12
f Pt dloga (12)

to convert displacements to velocities, setting

vep = aH foo [§V +2Co9
+3(C¥C + GG + Gy )] (13)

By construction, this gives the correct particle velocities on small
scales. To recover also the correct behaviour on horizon scales, we
add a large-scale correction vfj;) given by

V) = aH V2V (0 — 8cp), (14)

where 6, is the dimensionless energy flux transfer function com-
puted with CLASS. We verified that the resulting simulated power
spectrum agrees with linear theory to better than 0.1 per cent at the
pivot redshift of z = 0 on large scales. However, this approximation
neglects possible non-linear effects of scale-dependent growth on
particle velocities. Another alternative is to rescale the velocities by
the scale-dependent growth rate (Zennaro et al. 2017), which faces a
similar problem beyond linear order.

2.4 Additional steps for three-fluid ICs

The steps above are sufficient for simulations with neutrinos and a
single cold fluid. To separate this cold fluid into baryon and CDM
components with distinct transfer functions, we follow the approach
of Hahn, Rampf & Uhlemann (2021). In short, the component
densities are related to the mass-weighted average via®

5(: = 6cb - fbabm (15)

8 = 8cb + feObes (16)

where the difference variable, 8, = &, — ., is constant at first
order. The velocity difference too is conserved and vanishes at all
orders: v, = v, — v, = 0. These results, derived for ACDM without
massive neutrinos (Rampf, Uhlemann & Hahn 2021), carry over
to the neutrino case, essentially due to the fact that the neutrino
contribution cancels in the difference equations (Appendix A). The
transfer function difference, Sy, (k) = 8y (k) — 8.(k), is computed with

2We remind the reader that f, = €2,/ for A € {c, b} even as f, = 2,/Qn =
Qu/(Qch + 2y) =1 — fop. Furthermore, 8y # Scb and vpe 7# Vcb.

MNRAS 516, 3821-3836 (2022)
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CLASS at the pivot redshift and, since it is conserved, is not scaled
back.

After assigning displacements and velocities to both particle
species using the mass-weighted average fields, the density difference
is implemented by setting the masses to

m;(q) = m; [1+8,(q) — en(q)]. a7

with 7, the mean particle mass for type A € {c, b}. Perturbing the
masses, rather than the displacements, was found by Hahn et al.
(2021) to limit discreteness errors.

By construction, Newtonian simulations with ICs set up using
the above procedure, reproduce the expected evolution of two cold
fluids with a shared velocity field and a relative density contrast
that is approximately conserved. However, like the large-scale
velocity correction (14), a further modification is needed to bring
the dynamics back into agreement with CLASS at first order:

Doo(zpivot) 1/2

2 )Yy

( Doo(z:) )
D;x;(zpi"‘“) 1/2 2

v@) = vi@) +alf (%) T VEVE, @), (19)

where D, (z;) is the small-scale growth factor at the starting redshift
z; and O, = —f,0y, and O, = f.0y.. The difference, Oy (k) = Oy (k) —
0.(k), of the dimensionless energy flux transfer functions is computed
with CLASS at the pivot redshift.

m;(q) — my(q) + 2m;, 0.(q), (18)

2.5 Neutrino particles

Massive neutrinos can be included in N-body codes using a variety of
methods. The most common approach is to solve for the neutrino per-
turbations self-consistently by including them as a separate N-body
particle species (Brandbyge et al. 2008; Viel et al. 2010). ICs are then
also needed for these neutrino particles. Capturing the full neutrino
phase-space distribution is non-trivial even in linear theory and it
is therefore not sufficient to compute only the first two moments,
as is done for baryons and CDM. Accurate neutrino particle ICs
can be generated by integrating geodesics from high redshift (Ma &
Bertschinger 1994; Adamek et al. 2017), where the perturbed phase-
space distribution can be expressed analytically (Ma & Bertschinger
1995), but care must be taken that the equations of motion remain
valid in the ultrarelativistic régime (Elbers 2022). This procedure can
be carried out efficiently using our FASTDF code, which has also been
integrated with MONOFONIC. We stress that the focus of this paper
is on dark matter and baryon ICs and the results apply regardless of
whether the neutrino implementation uses particles.

2.6 Scale-dependent effects

Finally, we verified the approximations above by performing a
full calculation of scale-dependent effects on the second-order
displacement field. This is done by replacing (7) with a convolution
of two copies of the first-order potential ¢"(k), modulated by
kernels Df)(kl, k>) and Df)(kl, k,), computed in Section 4.2. This
numerical calculation is expensive, but we will show in Section 5 that
simulations with ICs based on the full calculation agree extremely
well with those based on the approximate scheme described above.
The reason for this is the hierarchy of scales, ks < ky;, which implies
that higher order corrections are important only on scales where
neutrinos do not cluster, at least at redshifts that are relevant for ICs.
Since the overall impact of the third-order correction factor, Cs, is
smaller than that of C, and given the excellent agreement between
the full and approximate solutions at second order, we expect the
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difference to be even smaller at third order. At the same time, the
triple convolutions required for the third-order solution would be
prohibitively expensive and would require a different approach. For
this reason, we only consider 2LPT in Section 4.2.

3 THEORETICAL SETUP

We now proceed with the set up of a three-fluid model, which is
solved in Section 4. We consider three fluids indexed by A € {c, b,
v} for cold dark matter, baryons, and neutrinos. Throughout, we will
treat baryons like dark matter particles and denote the mass-weighted
CDM-baryon fluid by subscript cb. Let p; (x) be the density, u; (x)
the peculiar velocity flow, and o, (x) the stress tensor. We also write
8;. = ps/ps. — 1 for the density contrast.

3.1 Euler equations
Taking moments of the Boltzmann equation yields the Euler fluid
equations (Bernardeau et al. 2002)

1
Oy +u; - Veuy, = —aHu; — V& — ;Vx(Pxe), (20)
n

0:8). + Vi - [(1+6)u,] =0, for A€ {c,b, v}, @n

where 7 is conformal time, H = 9, a/a® is the Hubble constant (given
explicitly below), and & the Newtonian potential. While the neutrino
distribution function and its higher order moments are complicated,
the stress tensor can be neglected for the cold dark matter and
baryon fluids on the scales of interest, 0. = o, = 0, because we are
restricting to scales much larger than the Jeans length at times before
shell crossing. Taking the mass-weighted average of the cold dark
matter and baryon equations, we obtain at all orders (see Appendix A)

Oty +Uepy - Villey = —aHuy, — Vi @, (22)
0:8ch + Vi - [(1 + dep)ucy] = 0. (23)

The potential is given by Poisson’s equation,

QuH

Vid(x) = % Sm (), (24)

in terms of the total matter density, 6, = fendcb + /1,61, Which includes
a massive neutrino contribution. To complete the system, we assume
the linear response approximation for the neutrino density:

85 (k)
85 (k)

8, (k) = Sen(K), (25)
where 8i(k) refers to the density transfer function of A € {v, cb}
computed in relativistic linear perturbation theory with CLASS. The
total matter density contrast is then

Sm(k) = [1 4+ a(k)] fenden (), (26)

where we have introduced the convenient notation o =
£85I /(fa,8in) for the linear theory ratio. The linear response
approximation is accurate while neutrinos and dark matter remain in
phase, which is a reasonable assumption at the early times considered
here (see below). Inserting this in equation (24) yields

— K o(k) = % [1 + (k)] den(k), 27

where By = %(1 — f,,)QmHO2 is written in terms of present-day
values. We look for a growing solution of the form d.(k, 7) =
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Dy (k, T)8c(k, Tp). Linearizing equations (22)—(24), we find
2 By
arch +aH3; Dy = — (1 +a)Dey. (28)
a

In contrast to the ACDM case, this equation is scale-dependent due
to the appearance of «(k). To proceed, we will take the limit k — oo.
Since limy _, (k) = 0, we simply obtain

By

2Do +aH3, Doy = — Do, (k — 00). (29)
a

We denote the solution of equation (29) by D, to indicate that this
is the small-scale solution. At this point, an equally valid description
could be given in the large-scale limit or indeed for an arbitrary pivot
scale. We deliberately choose the small-scale limit for two reasons.
First, most simulations are not large enough to realize the large-scale
limit. Second, we are interested in non-linear corrections to the ICs
which are negligible on large scales.

3.2 Asymptotic form

We can find an analytic® solution to equation (29) if the contribution
of radiation to the Hubble rate is neglected. We will return to this
point further below. For now, let us assume that

Q Q

= 12 {QA + L} . (30)
a3

In this case, the growing mode can be expressed in terms of the

hypergeometric function as (see Appendix B)

2 7 2 3 4 7
Doo(a):a”\/l+Aa32F1( p6+ , p6+ , p6+ ,—Aa3>,

(€29)]
with A = Q4 /Qm and p = /T + 24(1 — f,)/4 — 1/4. This is nor-

malized such that lim, _, ¢D../a” = 1. Taking f,, = 0, we recover the
ACDM solution with p = 1 (Rampf, Villone & Frisch 2015). Taking
instead A — 0, we recover the solution during matter domination
(MD)

Do(a) = a” = a«/l+24(lffu)/4*1/4, (32)

which agrees with Bond, Efstathiou & Silk (1980).

For ACDM without massive neutrinos, accurate non-linear pre-
dictions can be made by substituting the growth factor for the scale
factor, a — D, in solutions obtained for the Einstein—de Sitter model.
This is facilitated by using the growth factor as time variable (e.g.
Matsubara 2015; Rampf et al. 2015, 2021). Here, we will pursue a
similar strategy and make a change of time variables to D,. Defining
the quantity

2By [ Ds \* -
b =37 \o.Dx

and the new velocity variable vy, = dp_ x, the fluid equations can be
rewritten as

38
8000 Vep + Vep - Veleh = _gi(vcb + V.0), (34)
2Dy
9D 0eb + Vi - [(1 + 8en)vep] = 0, (35)
Vie = 32« (1 +a), (36)

3 A function fis analytic at x if the Taylor series of f around x converges to f
in a neighbourhood of x.
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where the rescaled potential ¢ = a®/(ByD,) is given in terms of a
convolution, denoted by *, of §., and the linear response (1 + «).
Although written in terms of D, this is completely general.

Given suitable boundary conditions, equations (34)—(36) are an-
alytic at Do, = 0. In particular, we require that 8 = i = 0. This
agrees with our use of growing mode solutions for particle displace-
ments, ¢ — g + ¥, where the unperturbed particle grid represents a
uniform density field. The scaling, H> o a3, of the Hubble rate at
early times ensures that such mass transport problems are well-posed
(Brenier et al. 2003; Rampf et al. 2015). This scaling does not hold
in the presence of radiation, a problem that already occurs in ACDM
on account of the cosmic microwave background radiation, but is
certainly made worse by the inclusion of massive neutrinos, which
scale like radiation in the relativistic régime. Therefore, we need to
start the integration at a time when the relativistic contribution of
neutrinos to the Hubble expansion can be neglected. Note that we
make this assumption to ensure a consistent mathematical framework
for the higher order LPT solutions. However, it is not needed for the
linear transfer functions, the back-scaling procedure or in the N-body
code itself. In each of those cases, we do take the relativistic neutrino
contribution into account.

Before proceeding, let us give the following convenient expression
for g in the limit A — 0O:

1 @PH dlogDy 1 JT+24(01 = f)—1

8x' = = . 37)
%Bo dloga 4 J1—f,

Both numerator and denominator scale approximately as (1 — f;)"2.

The numerator is simply the exponent of the growing mode in
(32), while the dependence of the denominator can be traced to
the appearance of By on the right-hand side of (29). The resulting
smallness of go. — 1 explains why neutrino corrections at nth order
are small relative to D’ : the lack of neutrino clustering is largely
compensated by slower growth of the linear solution. In the next
section, we will validate the assumptions made up to this point.

3.3 Validity of assumptions

Central to the approach of Section 4 is the linear response ap-
proximation (25) for the non-linear neutrino density, 6,(k). This
approximation is very accurate at early times, but underestimates
neutrino clustering on small scales and neglects the phase shift
between neutrinos and dark matter that builds up at late times (see
fig. 6 in Elbers et al. 2021). The top panel of Fig. 1 shows the non-
linear neutrino density contrast, computed from a simulation with
neutrino particles, relative to the linear neutrino response evaluated
at k = 0.60 Mpcfl. The neutrino mass is Y m, = 0.3 eV. The
figure suggests that the approximation is valid at this scale up to z &
1.5, when perturbation theory has presumably already broken down.
Hence, approximation (25) is well-suited for our application at much
higher redshifts.

A second approximation is that we neglect the contribution of
the relativistic tail of the neutrino distribution to the Hubble rate
in equation (30). We reiterate that this approximation is only made
for the calculation of the higher order kernels and not in any of the
calculations at first order. The middle panel of Fig. 1 shows that this
approximation is accurate to better than 1 per cent for a > 0.01, for
our default neutrino mass of Y m, = 0.3 eV. In particular, at the
fiducial starting redshift of z; = 31, the error is 0.3 per cent. We are
helped in this regard by our preference for late starts.

Finally, we assume that g, is constant in Section 4.1. The bottom
panel of Fig. 1 shows that this is an excellent approximation, except

MNRAS 516, 3821-3836 (2022)
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Figure 1. Accuracy of the linear response approximation (equation 25)
evaluated at k = 0.60 Mpc~!, compared to a reference simulation (top),
of the Hubble rate (equation 30) when neglecting radiation (middle), and of
equation (37) for the constant matter-dominated value for go.. The vertical
dotted line indicates the fiducial starting redshift of z; = 31. The neutrino
mass sum is »_m, = 0.3 eV and the shaded region is 10 per cent (top) and
1 per cent (middle and bottom).

at late times during A-domination. The figure suggests that there is
a window where all assumptions are valid, potentially allowing us to
push to even later starts, with the breakdown of LPT likely being the
limiting factor.

4 LAGRANGIAN APPROACH

In the Lagrangian approach to gravitational instability (Zel’'Dovich
1970; Buchert 1989; Moutarde et al. 1991; Bouchet et al. 1992, 1995;
Buchert & Ehlers 1993; Gramann 1993), the objective is to describe
fluid particle trajectories

x(g)=q+¥(@), (38)

in terms of a displacement field ¥. We use the Helmholtz decompo-
sition, writing the Laplacian of a smooth vector field as

VI =V(V-¥) -V x(Vxy). (39)

What remains is to solve for the longitudinal and transverse deriva-
tives. The displacement is related to the Eulerian density, §., through
the mass conservation equation

Sen(x) = 1, (40)

J@)

where J(q) is the determinant of the Jacobian of the coordinate
transformation, J;; = dx,;/dg;, given by

1
J=detJij =1+ + 3 (Vi) — Vi ¥y +det ;. (41)

MNRAS 516, 3821-3836 (2022)

Let (0/0Doo)L = (0p., + Ve - Vi) be the Lagrangian derivative.
The Lagrangian form of the Euler equation (34) can be written as

380
Doox = ———V,0, 42
x 3D 2 (42)
where we used v, = (0x /9 Do)1 and introduced the linear operator
3 \> 3 [ 0
Dy = . 43
i (BDOO)L+2DOO (aDm)L “3)

Using equation (36) and taking the divergence and curl of equation
(42), we find that the evolution of the displacement is governed by

_ 3800
2D2,

Vi X Doox(q) = 0. (45)

Vi - Doox(q) = [8ep * (1 + )] (x), (44)

To facilitate a fully Lagrangian description, we define the frame-
lagging terms (Aviles & Cervantes-Cota 2017; Wright et al. 2017)

F(g)=1[(1/J = D) al(q) — [8e * a](x). (46)

Frame-lagging terms arise from mapping the Eulerian neutrino
response to Lagrangian coordinates. We give explicit expressions up
to second order in Appendix C. Transforming the derivatives on the
left-hand side of equations (44) and (45) using 9, = (9¢,/0x;)d,; =
J,;l dy; and using equation (40), we write these equations in La-
grangian coordinates as

3g

—1 _ o)

I Doctij = 2D [(1=1/D)*(14+a)+ F], (47)
€ijkd ;' ooV = 0. (48)

It will be the task in the following sections to find perturbative
solutions for ¥. We perform an expansion in displacements, writing

v=> v, (49)
n=I1
where ¥ is of order [y"]".

4.1 Limiting solutions

Having set up the Lagrangian equations for the neutrino-cb fluid
model, we are now in a position to look for approximate solutions.
The aim is to find expressions for the displacement on large and
small scales. In the small-scale limit, neutrinos do not cluster and
only contribute to the background expansion as encoded by gu.
Meanwhile, in the large-scale limit, neutrinos cluster like cold dark
matter and one recovers behaviour analogous to ACDM. In both
cases, we can find simple solutions in the form of LPT recursion
relations (Rampf 2012; Zheligovsky & Frisch 2014; Matsubara 2015;
Rampf et al. 2015; Schmidt 2021). These limiting solutions will be
used as ICs for the numerical integration of the general problem and
provide the basis for the recipe of Section 2.

In this section, we assume that g., = constant, which is exact
during matter domination (equation 37), and a very good approxi-
mation in general (Fig. 1). On large scales, we also have 1 + «(k) =
1 + f,/f.,* and on small scales 1 + a(k) = 1. Hence, if all modes
involved in the problem are either large or small, we can approximate
the convolution with the neutrino response as multiplication by a

4This is not strictly true, since §, > d¢, on the largest scales due to the
relativistic tail of the neutrino distribution. We ignore this small effect in the
current section and in Fig. 2, but take it into account in Section 4.2.
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constant 8 = 1 + «(k). In such cases, the frame-lagging terms also
vanish, as will be confirmed in Section 4.2. Given these assumptions,
equation (47) reduces to

3B2x
2D2

I Doty = (1—1/J). (50

Using the identities JJ[;1 = (1/2)¢jip€igrJigdpr and J =
(1/6)€ jjx€ pgrdipJjqJir» We Tewrite equations (50) and (48) as

388
Eijképqrjqj‘,ip |:Dm - 2D2 :| Jkr + DZOO
00 0

€ipg quDoowk,l =0. (52)

Bgx

=0, (51)

Hence, using J;; = §;; + ¥; j and substituting the expansion (49), we
obtain equations for the longitudinal and transverse parts at order n
in terms of perturbations of orders m; + my = n (for n > 2) and m,
+ my + m3 = n (forn > 3):

3Bgoc

Do — vy

5 A
3pg 2
= Z 'fifkeipq‘/’/({r:) {DOO_ 4D;o] ]Err;) (53)
my+my=n o0
Lo o, on Bg

— Z Gijképqrillji(.pl)w;,;) |:Doo - 2D020:| IE”)”)’

mi+my+m3=n 0

DOOV X w(n) — Z V'l/fl(ml) X DOOV'(//,'(WQ)' (54)

my+my=n

The first-order equations separate. The longitudinal equation (53)
has the particular time-dependent solution

DV =D% with g =1\/4+3g,8B+3g0—4) — 380+ 1,

while the transverse equation (54) has constant and decaying solu-
tions. Identifying the fastest growing solutions order by order, we
find that ¥ oc D"9. In particular, we find that the fastest growing
solution at second order grows as

(@)
Dizq _ 38008 ) (55)
D 4929 — 1) +380(2g — B)
Reinserting 8 = 1 + «(k), we obtain a useful approximation of the
magnitude of neutrino effects on the second-order coefficient, relative
to the ACDM value of 3/7. This is shown by the dashed line in Fig. 2
for a model with > m, = 0.3 eV at z = 31. We stress that this
approximation neglects the non-trivial coupling with the neutrino
response in the general case. As we will see in the next section,
the second-order solution can be described in full by two kernels,
Df)(kl,kz) and Dg)(kl,kz). For most configurations on the 6D
Fourier space lattice that we use to generate N-body ICs, both k; and
ky are large and the result is close to the estimate of equation (55).
However, for cases with one mode large and one mode small or
for squeezed configurations with k = |k + k; | < ki =~ k;, the
value may depart from this estimate, as shown by the histogram in
Fig. 2. Nevertheless, the figure demonstrates that the large- and small-
scale limits provide reasonable bounds on the effect at intermediate
scales. Overall, the magnitude of the effect is O (107%), in line with
the estimate given in Section 2.2 for this mass. The figure also
demonstrates that the ACDM value of 3/7 is only reached for k
< 1073Mpc~', while the second-order potential is important for k
> 10~'Mpc~', reflecting the hierarchy between the neutrino free-
streaming scale and the non-linear scale, kg << ky, that motivates the
approach of Section 2.

Using ¢ o D¢, we derive recursion relations for the fastest
growing solution at order n > 2:

Higher order neutrino ICs 3827
Freq.
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Figure 2. Correction to the ACDM prediction of D® = (3/7)D* for
the second-order growth factor, according to the approximate model of
equation (55), for > m, = 0.3 eV at z = 31 (dashed line). The colours
represent a histogram of the full numerical solution, Dg)(kl , k), evaluated
on a 6D Fourier space lattice with physical dimension L = 800 Mpc (i.e.
Ak =7.85 % 1073 Mpc_l),projected ontothek = | k| + k»|-axis and nor-
malized per k-bin. For the large majority of configurations, the system attains
the approximate value. The shaded region indicates the range of scales for
which the power spectrum of k - ¥ is atleast 0.01 per centof thatof k - y(1).

1 4mmyq*
g — T
vy Z 2 {1 2ng(ng — 1) + 3g00(ng — ,3)}

mj+mpy=n

(my),, (m3)
X €ijk€ipg Vi p Yig

_ Z {1 B 4(m1m2+m2m3+m3m|)q2:|
2ng(ng — 1) + 38 (nq — B)

my+mpy+m3z=n
L
X eikepar VI VTGV (56)
1my—m
Vap = 3T SOy vy, (57)
mi+may=n n

For the purposes of higher order ICs, we are primarily interested
in deriving corrections to the ACDM coefficients in the small-scale
limit with § = ¢ = 1. Reading off coefficients from (56), we find
that these can be conveniently expressed in terms of

_ (2n+3)gw
" 2n+3gs
Proceeding as in Appendix D, we obtain the 3LPT form given in

Section 2.2. Combining equations (58) and (37) yields an accurate
approximation of C, in terms of f,:

8A—f)@n+3) ., 2fn

TS =12 4(S2—-1) 52n +3)’
with § = /1 + 24(1 — f,). For n = 2, the above expression agrees
with that given by Wright et al. (2017). The next section is dedicated
to relaxing the assumptions on g, and «(k), finding the general
solution at second order.

(58)

(59)

n

4.2 General solution

For the general solution, we need to deal with the frame-lagging
terms F'(q). Here, we will follow the approach of Aviles & Banerjee
(2020). We are interested in solutions at second order. The transverse

MNRAS 516, 3821-3836 (2022)
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equation (48) only has non-trivial solutions for n > 3. Therefore, we
concentrate on the longitudinal part. We repeat equation (47) for
convenience:

3800
-1
J;; le//i’jZZDz [(A=1/D)«(A4+a)+ F]. (60)
Using equation (41) and J,j’ = th‘;o[(l — J)"]ij, we can write this
up to second order in the displacement:

3g00 1
Docl[’i,i = 1://i,jIDool//j.i 1ptt * (1 + )_ 2D2 E

2D2

[1//“%,4-1//,,1//”]*(14-0!)4- SF®,(61)

where the second-order frame-lagging terms, F®, are given in
Appendix C. At first order, the displacement admits a growing
solution ¥V oc DU with a growth factor that satisfies

38
28 (14D, 62)

o0

DDV =

This is simply a reformulation of the Eulerian equation for the
first-order growth factor (28). Using the expansion (49) in (61) and
collecting second-order terms then yields

3goc 3goo 1
@ _ @ @) (S
Doy = I "D, -
Vi = gpp Vi * I+ )+ ¥ Dy 2D22
< vl + wlul)] o+ a)t 5 o 2 S O (63)

In Fourier space, each of the quadratic terms in (63), including the
second-order frame-lagging term, is a convolution of derivatives
of ¥V (k,) and ¥V (k). Expressing the displacements in terms of
potentials as

'/,(l) — —V(p(l), ¢(2) — —V(p(z), (64)

and identifying terms, we thus obtain

00 = 5 [ ke )
k

Lk (i) D
x {Df)(kl, ko)k2k2 — DY (ky, ka)k2, |, (65)
where fk],kz = fdkldkz(ZN)765(3)(k1 +ky, — k) and kjp = kg - ky

and D; = DW(k;) for i = 1, 2. Notice the similarity of this
equation with equation (7). The difference is that the two terms
now have distinct scale- and time-dependent coefficients satisfying

390

DD} = 21";2 (1 + (k) DY + + MDD, (66)
390

Do DY = 252 (1 4 a(k)) DY + + B)D\ D, (67)

~ 2D

o0

where the functions A and B are given by

a(k) — alks) + ak) — alky)

Ak, ki, k) = (k) + - o ki, (68)
I 2

B(k, ki, ko) = a(k)) + a(ky) — a(k), (69)

for k = | ky + kz|. The terms in square brackets correspond to the

frame-lagging terms. In the small-scale limit with k, k1, ky > k¢, we
have A = B = 0. Hence, D(2) Dg) and equation (65) factorizes as
in equation (7). Similarly, in the large-scale limit with &, &k, k» <
kes, we obtain again the approximate form described in Section 4.1
with A = B = f,/f.p. In both limits, the frame-lagging terms drop
out, as anticipated. Intermediate configurations will deviate from the

MNRAS 516, 3821-3836 (2022)

asymptotic solutions, as was already discussed in Section 4.1 and
shown in Fig. 2.

For the numerical solution, we begin the integration at a time when
the non-relativistic neutrino fraction is 50 per cent. For the fiducial
neutrino mass, » m, = 0.3 eV, this corresponds to z = 187. We
integrate equation (62) for the first-order growth factor and equations
(66) and (67) for the second-order kernels, using the approximate
model of equation (55) as ICs. The results, projected on to the k-axis,
are shown in Fig. 2. When generating 2LPT particle ICs, we begin by
generating a realization of the back-scaled first-order potential, ‘1.
We then perform the convolution integral of equation (65) explicitly,
interpolating from tables of Dfi)B (k, k1, k»). To ensure completion in
areasonable time frame, we impose cut-offs at k; < k¢, and ky < keyy.
We performed convergence tests to ensure that the results are inde-
pendent of the cut-off scale, finding that a cut-off at k., = 1 Mpc™!
was more than adequate for the resolutions considered in this paper.

5 RESULTS

We will now discuss the power spectra, bispectra, and halo mass
functions of massive neutrino simulations with different ICs. We
introduce our simulation suite in Section 5.1. We then consider
the impact of different approximation schemes for the second-
order kernels in Section 5.2 and follow it up with a comparison of
Zel’dovich (ZA), 2LPT, and 3LPT ICs at various starting redshifts in
Section 5.3. Finally, we consider the impact of ICs on the suppression
of the power spectrum as a function of neutrino mass in Section 5.4.

5.1 Simulations

We use the cosmological hydrodynamics code SWIFT (Schaller
et al. 2016, 2018), which uses task-based parallelism, asynchronous
communication, fast neighbour finding, and vectorized operations
to achieve significant speed-ups. The code uses the fast multipole
method (FMM) for short-range gravitational forces and the particle
mesh method for long-range forces. Neutrinos are modelled as a
separate particle species. We employ the §f method to suppress
the effects of shot noise (Elbers et al. 2021) and generate neutrino
particle ICs by integrating geodesics from high redshift using our
FASTDF code. Additionally, we use fixed ICs to limit cosmic variance
(Angulo & Pontzen 2016). Apart from the neutrino mass, we use
cosmological parameters based primarily on Year 3 results from
the Dark Energy Survey (Porredon et al. 2021) and Planck 2018
(Aghanim et al. 2020). Our choice of parameters is (h, Qm, b, Ay,
ny) = (0.681, 0.306, 0.0486, 2.09937 x 1077, 0.967), with different
choices for the neutrino density €2,. The parameters used by the
gravity solver are listed in Table 1 and an overview of the simulations
is given in Table 2.

There is a subtle point regarding comparisons between simulations
with and without massive neutrinos. Codes like SWIFT employ a
multipole acceptance criterion to determine when the multipole
approximation is sufficiently accurate to be used without further
refinement. The adaptive criterion used for the runs in this paper
is based on error analysis of forces on test particles. This means
that the accuracy of the N-body calculation depends on the number
of particles contained in any given volume. When comparing two
runs with equal numbers of dark matter particles, one with neutrinos
and the other without, all other things being equal, forces will be
calculated more accurately in the run with neutrinos. To account
for this difference, we included an equal number of massless
‘spectator’ neutrino particles in the f, = 0 runs, with velocities
corresponding to m, = 0.05 eV neutrinos. These particles contribute
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Nep = 600 (low-res) and N, = 12007 (high-res) simulations.
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Parameter Low-res High-res
mesh_side_length 512 1024
MAC Adaptive Adaptive
epsilon_fmm 0.001 0.001
eta 0.025 0.025
theta.cr 0.7 0.7
use_tree_below_softening 1 1
comoving.DM_softening 0.0533333 0.0266667
max_physical DM_softening 0.0533333 0.0266667
comoving.nu_softening 0.0533333 0.0266667
max_physical_nu_softening 0.0533333 0.0266667

Table 2. Description of the simulations. The listed particle mass, m,,, refers
to the cb particles. The neutrino fraction is listed as f;, = Q,/(Q2p + 2,). All
simulations used the same random phases in an L = 800 Mpc cube.

ICs zZ No  mp [Mg] N, >omy fo
ZA 127 12000 1.14 x 10 6003 0.30eV  0.023
ZA 63 1200 1.14 x 101 6003 030eV  0.023
ZA 31 12000 1.14 x 109 6003 0.30eV  0.023
2LPT 31 12000 1.14 x 100 6003 030eV  0.023
3LPT 31 12000 1.14 x 100 6003 0.30eV  0.023
2LPT 31 12000 1.17 x 100 6003 0.00evV 0.0
2LPT 31 12000 1.14 x 109 6003 0.30eV  0.023
2LPT 127 12000 1.17 x 10 6003 0.00eV 0.0
2LPT 127 12000 1.14 x 10" 6003 0.30eV  0.023
ZA 31 6003 9.34 x 1010 6003 0.00eV 0.0
ZA 31 600 923 x 100 6003 0.15evV  0.011
ZA 31 6003 9.12 x 1010 6003 030eV  0.023
2LPT 31 600 924 x 100 6003 0.00eV 0.0
2LPT 31 6003 9.23 x 1010 6003 0.15eV  0.011
2LPT 31 600 9.12x 100 6003 0.15evV  0.011
3LPT 31 6003 9.34 x 1010 6003 0.00eV 0.0
3LPT 31 6003 923 x 100 6003 0.15e¢v 0011
3LPT 31 6003 9.12 x 1010 6003 030eV  0.023
2LPT 63 600> 924 x 100  600° 0.00eV 0.0
2LPT 63 6007 9.23 x 1010 6003 0.15eV 0011
2LPT 63 6000  9.12x 10 600 0.15eV  0.011
2LPT 127 6003 9.24 x 1010 6003 0.00evV 0.0
2LPT 127 600° 923 x 100 6003 0.15eV  0.011
2LPT 127 6003 9.12 x 1010 6003 0.15ev 0011

no forces and only affect the N-body simulation through the multipole
acceptance criterion, ensuring that the accuracy of the massless runs
is comparable to that of the massive neutrino runs. Such massless
runs are considered in Section 5.4.

5.2 Validation of approximate treatment

To validate our approach, we compare three different implementa-
tions of 2LPT, based on the following models:

(1) The asymptotic model of Section 2
(ii)) A model with ACDM coefficients
(iii) A reference model with scale-dependent effects

The first-order displacements and velocities are identical in each of
the approaches, obtained from the back-scaled linear power spectrum
at z = 0. In the asymptotic scheme, we use equations (4) and (13),
but truncate the 3LPT terms. In the ACDM approximation, we
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Figure 3. Impactof approximation schemes for the second-order potential on
the CDM and baryon power spectrum. The reference run used ICs based on a
numerical calculation of the scale-dependent 2LPT kernels, D(Az) (k1, k2) and
Dg)(k 1, k2). In the asymptotic approximation (black), we use equations (4)
and (13), but truncate third-order terms. In the ACDM approximation (red),
we additionally set C» = 1. The vertical dotted line is the particle Nyquist
frequency.

additionally set C, = 1, which corresponds to neglecting neutrino
effects at second order. Finally, we compare these two approximate
methods with a reference run that relied on a numerical calculation
of the scale-dependent 2LPT kernels, fo)(kl, k>) and Dg)(kl, k»).
With respect to Fig. 2, the asymptotic approximation corresponds to
using the small-scale limit, the ACDM approximation corresponds
to the large-scale limit, and the reference run corresponds to the
underlying histogram. We use simulations with side length L = 800
Mpc and N, = 1200° particles.

Fig. 3 shows the impact of these approximations on the power
spectrum of the evolved CDM and baryon density field. The dif-
ferences are most evident at z = 3 (bottom panel). On the largest
scales, k < 0.05Mpc~!, non-linear corrections are small and all
simulations agree to machine precision. For k > 0.05 Mpc™', the
ACDM simulation systematically underestimates clustering with a
maximum error of 0.04 per cent at k = 4 Mpc~'. For the asymptotic
run, the error is two orders of magnitude smaller over the same
scales. Between z = 31 and z = 3, the evolution is virtually identical
in the asymptotic and reference runs, but we begin to see some noise
in the ratio on the smallest scales at z = 1 (middle panel). These
perturbations continue to grow until z = 0 (top panel), where we find
ascatter of 2 x 107* fork > 1 Mpc~! in both the asymptotic/reference
and ACDM/reference ratios. It is hard to attribute this noise to any
particular run as the power spectrum on these scales is increasingly
determined by the internal structure of poorly resolved haloes. On
larger scales, k < 1 Mpc™', the asymptotic run performs extremely
well with errors below 107>, while the systematic deficit in the
ACDM run persists.
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Figure 4. Impact of starting time and LPT order on the CDM and baryon
power spectrum. The reference simulation used 3LPT and both it and the
2LPT simulation were started at z; = 31. The shaded area is 1 per cent and
the vertical dotted line is the particle Nyquist frequency.

These results demonstrate that, at second order, the effect of the
suppressed neutrino perturbations can be absorbed into a scale-
independent factor C, and that further scale-dependent neutrino
effects are negligible as far as ICs are concerned. We expect that
this continues to hold for third-order corrections, which are confined
to even smaller scales. Including the correction factor C, is clearly
superior to simply using the ACDM coefficient. However, we also
observe that this higher order neutrino effect is below 0.1 per cent,
and therefore beyond the sensitivity of current experiments. Hence,
we conclude that for most purposes both the ACDM approximation
and the asymptotic approximation are justified.

5.3 Choice of LPT order and starting time

We are now in a position to study the effects of LPT order and
starting time on massive neutrino simulations, using the asymptotic
approximation. Fig. 4 shows the late-time power spectrum for
simulations with L = 800 Mpc and N, = 1200° particles, comparing
in the first instance Zel’dovich (solid red) and 2LPT (solid black)
with 3LPT (dotted grey) as a baseline. All three runs were started
at z; = 31. The most striking observation is that the differences
are much larger than those shown in Fig. 3. This means that using
higher order LPT in some fashion is more important than getting
the details right. Next, we find per cent agreement between 2LPT
and 3LPT over the entire range of scales probed for z < 1 and
approximately a 1 per cent error at z = 3 for k > 2 Mpc~!. We also
find that the Zel’dovich approximation performs very poorly with
errors of (4, 7, 15) per cent for k > 1 Mpc™! at z = (0, 1, 3). This
well-known fact (Crocce et al. 2006) has motivated practitioners
to start Zel’dovich simulations at higher redshifts, when truncation
errors are smaller. We demonstrate this with Zel’dovich runs started
at z; = 63 (dashed, red) and z; = 127 (dotted, red). While the
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Figure 5. Impact of starting time and resolution on the CDM and baryon
power spectrum. The simulations are compared against 3LPT runs with the
same resolution (Ngp = 6003 or Ny, = 12003), started at z; = 31. The shaded
area is 1 per cent. Not all combinations were tested.

agreement with the higher order runs improves, we still find per cent
agreement only up to k = 0.4 Mpc~'. Moreover, starting earlier
introduces inaccuracies of a different sort. To see this, we repeat
the exercise at a lower resolution with Ny, = 6003 particles. The
resulting power spectra at z = 0 are shown in Fig. 5, with Zel’dovich
runs compared against 3LPT in the top panel. We observe that for
runs started at z; = 31 (red), the error is almost independent of
resolution. However, for earlier starts at z = 63 (black) and z =
127 (blue), the lower resolution runs increasingly underestimate the
power spectrum on small scales. This shows that while truncation
errors decrease, resolution effects increase as simulations are started
earlier. The pattern reverses for 2LPT (bottom panel), with earlier
starts performing worse than later starts. This can easily be explained
by the fact that truncation errors are much smaller for 2LPT, such that
the effect of increasing discreteness errors dominates. We confirm the
finding of Michaux et al. (2021) that the size of discreteness errors is
independent of LPT order. This demonstrates that, at fixed resolution
and LPT order, starting earlier does not guarantee convergence on
to the higher order solution. As was the case for truncation errors,
discreteness errors are much larger at z = 1, 3 (not shown).

We also consider three-point statistics, which are sensitive to
transients from ICs (Crocce et al. 2006) and an interesting probe
of neutrino physics (Chiang et al. 2018; Ruggeri et al. 2018; Hahn
et al. 2020). For the equilateral bispectrum, B(k) = B(ky, k», k3) with
k = ky = k, = k3, shown in Fig. 6 at late times, the same pattern
is broadly repeated as for the power spectrum. However, errors are
approximately twice as large as for the power spectrum. In detail,
we again find per cent agreement between 2LPT and 3LPT forz < 1
with larger errors on small scales at z = 3. For the Zel’dovich runs,
we find significant errors compared to 3LPT, even when starting at
z = 127, with per cent agreement only up to k = 0.1 Mpc™! at z =
0, and not even there for z > 1.
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Figure 6. Impact of starting time and LPT order on the equilateral bispectrum
of CDM and baryon density perturbations at late times. The reference

simulation used 3LPT and both it and the 2LPT simulation were started
at z; = 31. All runs used Ny, = 12003 particles. The shaded area is 1 per cent.
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Figure 7. Impact of starting time and LPT order on the halo mass function,
SiM) =dn/dlog M, at z =0 for the N, = 12007 runs. The reference simulation
used 3LPT and was started at z; = 31. The shaded area is 1 per cent.

Finally, we compare the halo mass function at z = 0. Haloes are
identified with VELOCIRAPTOR (Elahi et al. 2019) using a 6D friends-
of-friends algorithm applied to the cb particles. Spherical overdensity
masses are computed within spheres for which the density equals
200 times the mean CDM and baryon density p,. The reason for
using P instead of the total mass density py, is that it is this cold
density field that produces universal and unbiased results in halo
model calculations (Ichiki & Takada 2012; Castorina et al. 2014,
Massara, Villaescusa-Navarro & Viel 2014). The results are shown
Fig. 7. Wc 2LPT and 3LPT over the entire mass range, but large
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errors for the Zel’dovich runs. There is an interesting pattern in
the Zel’dovich error as the starting time is varied. For late starts
(solid red), the simulation agrees well at the low-mass end but
underestimates the number of very massive, 10! Mg, haloes by
more than 7 per cent. This can be understood in terms of the deficit
of power seen also in Fig. 4, resulting in a suppressed growth of large
structures. Meanwhile, for early starts (dotted and dashed red), the
agreement at the high-mass end improves like the small-scale power
spectrum. However, the number of low-mass haloes decreases by
a similar factor, likely due to discreteness errors. This seems to be
broadly consistent with the ACDM results of Michaux et al. (2021),
but not with Nishimichi et al. (2019) who find little dependence on
starting time at z = 0.

5.4 Dependence on neutrino mass

Thus far, we have focused on a single neutrino mass of Y m, =
0.3 eV. However, it is of great interest to determine the effect of
ICs on the suppression of the power spectrum for different neutrino
masses. We consider three cases:

(i) massless neutrinos
(ii) degenerate > m, = 0.15 eV neutrinos (f, = 0.011),
(iii) degenerate > m, = 0.30 eV neutrinos (f, = 0.023).

In each case, we adjust Q.4 to keep the total matter density 2,
fixed. To be able to carry out many variations for each neutrino
mass, we primarily use lower resolution simulations with No, =
6003 particles in an L = 800 Mpc cube. The results of the previous
section suggest that this resolution is sufficient to study the impact
of LPT order and starting time (see Fig. 5).

First, we consider the effect of LPT order. In Fig. 8, we show
the suppression of the CDM and baryon power spectrum relative to
the massless case, comparing ZA/ZA (solid), 2LPT/2LPT (dashed),
and 3LPT/3LPT (shaded). Evidently, it is crucial to compare like
with like simulation, keeping the LPT order and starting redshift
the same. Not doing so introduces large errors in the ratio, as might
be expected from the fixed neutrino mass results discussed above.
We illustrate this by including a dotted line for the ZA/2LPT ratio,
which is clearly off the mark. However, even when comparing like
with like, we find a residual error that is proportional to the neutrino
mass, rises with k, and peaks around the turn-over of the suppression.
This feature is most clearly visible at z = 1 for ZA, with a maximum
error of 0.05f,. The effect is already present in the ICs and can be
explained by a mass-dependent suppression of non-linear terms. As
virialized structures grow, both the turn-over of the suppression and
the peak of the error move to larger scales. At z = 0, the error is
0.025f, around k = 0.3 Mpcfl. On smaller scales, we see a scatter
of order 0.5 per cent, treading outside the scale-dependent error bars
that correspond to a £0.005 eV shift in > m,. For 2LPT, both the
systematic effect and the noise are greatly suppressed, resulting in
0.1 per cent-level agreement with 3LPT even at early times.

Next, we consider the effect of the starting time of the simulation.
In Fig. 9, we show the suppression for simulations with 2LPT ICs
started at z = 127 (solid), z = 63 (dashed), and z = 31 (shaded). Once
again, we compare like with like simulations. Even so, we find a small
residual effect with earlier starts overestimating the suppression. The
differences between z = 31 and z = 63 are minimal for both neutrino
masses. However, starting at z = 127 results in (0.1, 0.2) f,, errors
at z = (0, 1) for k > 1 Mpc~!. These errors once again exceed the
threshold for a £0.005 eV shift in ) m,. Based on the discussion
above, and given that we are using 2LPT, we expect that truncation
errors are small at both redshifts. This suggests that the differences
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Figure 9. Impact of starting redshift and resolution on the suppression of the CDM and baryon power spectrum. The neutrino masses are > m, = 0.15 eV
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represent a +0.005 eV shift (light) and a constant 0.1 per cent error (dark) where this is smaller. All simulations used 2LPT ICs.

are caused by resolution effects, which grow in importance with the
starting redshift. To test this, we repeated some of the simulations at
a higher resolution with N, = 12007 particles, starting at z = 127
and z = 31. The ratio is shown as a dotted line in the bottom panels
of Fig. 9. The agreement between the early and late starts improves
to 0.1 per cent up to k = 10 Mpc™! at z = 0, comparable to the
low-resolution z = 63 start. However, the suppression is still slightly
overestimated at z = 1.
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One possible alternative explanation is that errors could be in-
troduced by the back-scaling procedure (Section 2.1). To test this
hypothesis, we repeated some of the simulations with ‘forward’
ICs, as in Elbers et al. (2021). We found nearly identical results
for these runs, ruling out this explanation. Another possibility is
that the errors could be the result of shot noise, since we use a
particle-based implementation of neutrino perturbations. However,
this is unlikely as the differences already appear at high redshift
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when shot noise is highly suppressed due to our use of the §f method.
Finally, one might expect differences due to relativistic effects that are
increasingly important for earlier starts. Once again, this is unlikely
since relativistic effects would appear on the largest scales, where the
differences shown in Fig. 9 are minimal. Since the error decreases
for the higher resolution runs, discreteness effects likely account for
the majority of the difference, with massive neutrino simulations
being more sensitive to such errors, due to the suppressed growth of
structure. Late starts can be utilized to minimize the effect of particle
resolution, as shown in Fig. 5.

6 DISCUSSION

We have investigated the use of higher order Lagrangian ICs for
cosmological simulations with massive neutrinos. We solved the fluid
equations for a neutrino-CDM-baryon model with approximate time
dependence in the large- and small-scale limits, finding that higher
order neutrino effects can be described by scale-independent coef-
ficients that are easy to implement in existing IC codes. To validate
our approach, we constructed ICs based on a rigorous treatment of
the scale-dependent neutrino response in 2LPT, obtaining agreement
with our scheme to better than one part in 10° up to k = 1 Mpc~! in
the power spectrum of the evolved CDM and baryon perturbations
at late times.

Compared to these small differences, we find that the truncation
error associated with using the first-order Zel’dovich approximation
is much larger. For our fiducial model with > m, = 0.3 eV and
a starting redshift of z; = 31, the error is 4 per cent in the power
spectrum and 7 per cent in the equilateral bispectrum around £ = 0.5
Mpc~! at z = 0. Ratios of statistics from simulations with different
neutrino masses can be calculated much more robustly, provided that
the LPT order and starting redshift are the same. Nevertheless, even
such ratios have a residual dependence on the ICs. For instance,
Zel’dovich ICs introduce a mass-dependent error in the suppression
of the power spectrum that grows with wavenumber k and redshift
z, peaking around the turn-over of the suppression. We also find that
the starting time of the simulation has an impact on the suppression
over a wide range of scales and redshifts. Simulations started at z; =
127 overestimate the suppression of the power spectrum on small
scales, compared to later starts. While simulations can be started at
higher redshifts to reduce truncation errors, this also increases the
importance of particle resolution and relativistic effects. To minimize
errors from ICs and particle resolution, simulations can be started at
late times using higher order ICs.

A major target of cosmological surveys is to measure the sum of
neutrino masses. Assuming the minimum value allowed under the
normal mass ordering, Y m, = 0.06 eV, cosmology could provide
a 30 detection and rule out the inverted mass ordering at 2o by
reaching a sensitivity of 0.02eV, which is in reach of future cosmic
microwave background and large-scale structure experiments
(Hamann et al. 2012; Abazajian et al. 2015; Brinckmann et al.
2019; Chudaykin & Ivanov 2019). This corresponds to detecting
1 per cent effects on the matter power spectrum on 0.1 Mpc™! < k
< 1 Mpc~! scales. We should therefore aim for neutrino simulations
with errors that are well below 1 per cent on these scales. While
Zel’dovich ICs fall short of this mark, our findings suggest that
2LPT is sufficiently accurate for most applications. Higher order
statistics at high redshift seem to be the notable exception, which
could be relevant for Lyman « forest simulations.

The accuracy of neutrino simulations depends on many factors: the
accuracy of the linear transfer functions and back-scaling procedure
(Lesgourgues & Tram 2011; Zennaro et al. 2017), the implementation
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of neutrino perturbations (e.g. Bird et al. 2018; Elbers et al. 2021),
neutrino ICs (Elbers 2022), and dark matter and baryon ICs (this
paper). It has now been demonstrated that each of these factors
can be controlled to within 1 per cent. The remaining uncertainty is
likely dominated by the choice of gravity solver. Achieving 1 per cent
agreement between different N-body codes is non-trivial even in the
absence of neutrinos (Schneider et al. 2016; Garrison, Eisenstein &
Pinto 2019; Grove et al. 2022). Fortunately, the accuracy of N-
body codes should not in the first place be expected to deteriorate
in the presence of neutrinos. In fact, the accuracy could even
improve for particle-based implementations due to ‘spectator’ effects
(Section 5.1). A systematic comparison of neutrino simulations with
different codes and identical ICs could establish whether this is
indeed the case. Such explorations would improve our ability to
simulate non-linear clustering in Universes with massive neutrinos,
allowing us to meet the demands of the next generation of surveys.
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APPENDIX A: DIFFERENCE AND SUM
EQUATIONS

As in equations (34)—(36), the component fluid equations (20-21)
can be rewritten using Do, as time variable and v, = u; /9. D as
velocity:

38

Op Vi + vy - Vv, = — (v, + Vi), (A1)
2Dy

0p 0 + Vi - [(1 +8)v,] =0, (A2)

for A € {c,b} with ¢ = a®/(ByDw,) and g, defined in equation (33).
The ICs at D, = 0 must be v, = v, = —V, ¢ for equation (A1) not
to diverge. Taking the difference of equation (A1) for A =band A =
c gives

38

=5 Ve, (A3)

8Doovbc + vy - vabc + Ve - v,\rvc = 2Doo
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where vy, = v, — v.. Notice that the neutrino contribution contained
in V, ¢ has dropped out. Consequently, we obtain results analogous
to the ACDM case without massive neutrinos (Rampf et al. 2021).
Expand v, = 307 o for & € {c, b} and vpe = 3.7, o). At

first order, we find

38
Op. v = =5 D= (Ad)
oo

Since g is strictly positive (see Fig. 1), the only non-decaying
solution is vfjlc) = 0. As vy, = 0 initially, this is the only solution.

Suppose that vgz) =0form=1,...,n— 1. Then also
n 3g00 (n)

dp o) = — 2% "), (AS)
be 2Doo be

with the only solution being v(") = 0. It follows that vy, = 0 at all
orders. Using this result and taking the mass-weighted average of the
component equations yields at all orders:

3
%uwwm%m;—£%m+wm (A6)
3DOQ‘Scb + vx : [(1 + Scb)vcb] =0. (A7)

Converting back to t-time gives equations (22) and (23). Letting
dpe = 8y — 8. and taking the difference of equation (A2) for A = b
and A = c also gives

9D 8bc + Vi - [SpcVeb] = 0. (A8)
Inserting Spe = > o, (Sé’:), we find that (Sf,? = constant at first order,
as in the case without neutrinos.

APPENDIX B: ANALYTIC SOLUTION

We seek a solution to
2 By

0:D+aHo,D = —D. (B1)
a

To express the solution as a function of the scale factor, a(t), we
switch time variables to loga and define the new velocity variable,
i, = Uep/(aH). equation (B1) is then written as

d*D [

d(loga)? - b (B2)

adH?

dlog H} dD By

dloga | dloga

The hypergeometric function ,F(c, d, e, z) is a solution of the
differential equation

d’F dF
72(1—2)— +[e—(c+d+1)z]— —cdF =0. (B3)
dz? dz

Given the Ansatz D(a) = a’~/1 + Aa®*F(z) with z = —Ad® and
A = Q4 /2y, we obtain after some algebra

(- )dziFJr{z( + D0 -2)-3 —E} ar
“dogay P Y775 dloga

, P 3 2 21
=— ——=(1=f) - 5 — F.
Kerz 5 f)) (p+p+4 z
(B4)
To bring this in the form of equation (B3), we require

_1<
P=3

T+ 24(1— fo)— 1), (BS)
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where the positive sign picks the growing solution. Using this in
equation (B4), we obtain

oS o, 7 e OF
ATy T |t Ty TP TRy,

_ 1 45 +21 F (B6)
To P TP

Identifying constants in equations (B3) and (B6), we derive the
desired expression

2p+7 2p+3 4p+7
D(a):a”\/l+Aa32F1( p6+ , p6+ , p6+ ,—Aa3>,
(B7)

with p = T T 2401 = 7,)/4 — 1/4.

APPENDIX C: FRAME LAGGING

Let S(x) = (8¢ * @) (x). Since S is itself first order, we have up to
second order that

N
Sx) = S(g+¥) =S+ —

3 Vi(q). (CD)
qi

q

Denoting the Fourier transform of S(x) as F {S(x)}, we find that

N
agi

fwunsz@n+f{

} * F{yi(q)} ((62))

q

To be more explicit, we will denote the Fourier transform of S(x) by
S*(k) and the Fourier transform of S(q) by S%(k). The above identity
can then be written as

ymzwm+/

ky.ky

where [, = [ dkdk,27) 6P (k| + k, — k). Similarly,

ik S (k) (k), (C3)

5§’b(k)=5§b(k)—/ ik 8% (k)i (k). (&)

ki k>

Combining the last two equations, we obtain
a* (k)83 (k) = o (k)55 (k) — F(k), (C5)

where we denote the so-called frame-lagging terms by
F(k) = / ik} [ () — (k)] 88, ()W (k2). (Co)
ki ko

Now, since &3, = 1/J — 1, we obtain the result used in Section 4.2:
[8co * a)(x) = [(1/J — 1) * a)(q) — F(q)- (&)
We now rewrite the second-order frame-lagging terms using the mass

conservation equation, obtaining

ﬂ%m=/‘[mm—amnﬂﬂw%hwﬁwa (C8)
ky.ko

APPENDIX D: TERMS UP TO THIRD ORDER

We give explicit expressions up to third order. For n = 2, both the
cubic term on the right-hand side of (56) and the quadratic term on
the right-hand side of (57) vanish. Hence, only the quadratic term in
(56) contributes. Using €x€;pq = 8,044 — 8404, We find

3800 1

Vo= _
v 443852

WM D
[Wi,,- 70~ Vi i-.i}' (DD

MNRAS 516, 3821-3836 (2022)
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The corresponding ACDM coefficient (3/7) is found by setting g =
1. Dividing these coefficients, one obtains the scale-independent
factor C; = 7g00/(4 + 3gx). For n = 3, we obtain two pieces from
(56) and one piece from (57), giving Y@ = 3@ 4 G 4 4G,
Using det A;; = (1/6)€;jk€pqr Aip A jq A, We can write these as

R i"; dety"), (D2)
o0
44685 1
(Gb) — e M@ 1,2
vy —_mi [ LV~ Vi i,ji| (D3)

MNRAS 516, 3821-3836 (2022)

1
Vx gl = —gv\/f}” x V. (D4)

The corresponding ACDM terms are again found by setting go, =
1. Expressing these in terms of potentials (equations 7-10) and
dividing the corresponding coefficients, we obtain the form given
in Section 2.2 in terms of C, C,, Cs.

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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