Dr Andrew Krause andrew.krause@durham.ac.uk
Associate Professor
Dr Andrew Krause andrew.krause@durham.ac.uk
Associate Professor
Eamonn A. Gaffney
Benjamin J. Walker
Pattern formation has been extensively studied in the context of evolving (time-dependent) domains in recent years, with domain growth implicated in ameliorating problems of pattern robustness and selection, in addition to more realistic modelling in developmental biology. Most work to date has considered prescribed domains evolving as given functions of time, but not the scenario of concentration-dependent dynamics, which is also highly relevant in a developmental setting. Here, we study such concentration-dependent domain evolution for reaction–diffusion systems to elucidate fundamental aspects of these more complex models. We pose a general form of one-dimensional domain evolution and extend this to N-dimensional manifolds under mild constitutive assumptions in lieu of developing a full tissue-mechanical model. In the 1D case, we are able to extend linear stability analysis around homogeneous equilibria, though this is of limited utility in understanding complex pattern dynamics in fast growth regimes. We numerically demonstrate a variety of dynamical behaviours in 1D and 2D planar geometries, giving rise to several new phenomena, especially near regimes of critical bifurcation boundaries such as peak-splitting instabilities. For sufficiently fast growth and contraction, concentration-dependence can have an enormous impact on the nonlinear dynamics of the system both qualitatively and quantitatively. We highlight crucial differences between 1D evolution and higher-dimensional models, explaining obstructions for linear analysis and underscoring the importance of careful constitutive choices in defining domain evolution in higher dimensions. We raise important questions in the modelling and analysis of biological systems, in addition to numerous mathematical questions that appear tractable in the one-dimensional setting, but are vastly more difficult for higher-dimensional models.
Krause, A. L., Gaffney, E. A., & Walker, B. J. (2023). Concentration-Dependent Domain Evolution in Reaction–Diffusion Systems. Bulletin of Mathematical Biology, 85(14), https://doi.org/10.1007/s11538-022-01115-2
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 24, 2022 |
Online Publication Date | Jan 13, 2023 |
Publication Date | 2023 |
Deposit Date | Jan 26, 2023 |
Publicly Available Date | Jan 26, 2023 |
Journal | Bulletin of Mathematical Biology |
Print ISSN | 0092-8240 |
Electronic ISSN | 1522-9602 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 85 |
Issue | 14 |
DOI | https://doi.org/10.1007/s11538-022-01115-2 |
Public URL | https://durham-repository.worktribe.com/output/1184265 |
Published Journal Article
(3.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Turing Instabilities are Not Enough to Ensure Pattern Formation
(2024)
Journal Article
Turing Pattern Formation in Reaction-Cross-Diffusion Systems with a Bilayer Geometry
(2024)
Journal Article
Patterning of nonlocal transport models in biology: The impact of spatial dimension
(2023)
Journal Article
VisualPDE: Rapid Interactive Simulations of Partial Differential Equations
(2023)
Journal Article
Bat teeth illuminate the diversification of mammalian tooth classes
(2023)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search