Rebecca J. Salthouse
Near-infrared electroluminescence beyond 940 nm in Pt(N^C^N)X complexes: influencing aggregation with the ancillary ligand X
Salthouse, Rebecca J.; Pander, Piotr; Yufit, Dmitry S.; Dias, Fernando B.; Williams, J.A. Gareth
Authors
Piotr Pander piotr.h.pander@durham.ac.uk
Academic Visitor
Dr Dmitry Yufit d.s.yufit@durham.ac.uk
Academic Visitor
Dr Fernando Dias f.m.b.dias@durham.ac.uk
Associate Professor
Professor Gareth Williams j.a.g.williams@durham.ac.uk
Professor
Abstract
We present a study of aggregate excited states formed by complexes of the type Pt(N^C^N)X, where N^C^N represents a tridentate cyclometallating ligand, and X = SCN or I. These materials display near-infrared (NIR) photoluminescence in film and electroluminescence in NIR OLEDs with λmaxEL = 720–944 nm. We demonstrate that the use of X = SCN or I modulates aggregate formation compared to the parent complexes where X = Cl. While the identity of the monodentate ligand affects the energy of Pt–Pt excimers in solution in only a subtle way, it strongly influences aggregation in film. Detailed calculations on aggregates of different sizes support the experimental conclusions from steady-state and time-resolved luminescence studies at variable temperatures. The use of X = I appears to limit aggregation to the formation of dimers, while X = SCN promotes the formation of larger aggregates, such as tetramers and pentamers, leading in turn to NIR photo- and electroluminescence > 850 nm. A possible explanation for the contrasting influence of the monodentate ligands is the lesser steric hindrance associated with the SCN group compared to the bulkier I ligand. By exploiting the propensity of the SCN complexes to form extended aggregates, we have prepared an NIR-emitting OLED that shows very long wavelength electroluminescence, with λmaxEL = 944 nm and a maximum EQE = 0.3 ± 0.1%. Such data appear to be unprecedented for a device relying on a Pt(II) complex aggregate as the emitter.
Citation
Salthouse, R. J., Pander, P., Yufit, D. S., Dias, F. B., & Williams, J. G. (2022). Near-infrared electroluminescence beyond 940 nm in Pt(N^C^N)X complexes: influencing aggregation with the ancillary ligand X. Chemical Science, 13(45), 13600-13610. https://doi.org/10.1039/d2sc05023d
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 24, 2022 |
Online Publication Date | Nov 11, 2022 |
Publication Date | 2022 |
Deposit Date | Feb 20, 2023 |
Publicly Available Date | Feb 20, 2023 |
Journal | Chemical Science |
Print ISSN | 2041-6520 |
Electronic ISSN | 2041-6539 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 13 |
Issue | 45 |
Pages | 13600-13610 |
DOI | https://doi.org/10.1039/d2sc05023d |
Public URL | https://durham-repository.worktribe.com/output/1181615 |
Files
Published Journal Article
(3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/3.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
You might also like
Electroluminescence of Tetradentate Pt(II) Complexes: O^N^N^O versus C^N^N^O Coordination
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search