Carina B. Fialho
9-Borafluoren-9-yl and diphenylboron tetracoordinate complexes of F- and Cl-substituted 8-quinolinolato ligands: synthesis, molecular and electronic structures, fluorescence and application in OLED devices
Fialho, Carina B.; Cruz, Tiago F. C.; Rodrigues, Ana I.; Calhorda, Maria José; Vieira Ferreira, Luís F.; Dias, Fernando B.; Morgado, Jorge; Maçanita, António L.; Pander, Piotr; Gomes, Pedro T.
Authors
Tiago F. C. Cruz
Ana I. Rodrigues
Maria José Calhorda
Luís F. Vieira Ferreira
Dr Fernando Dias f.m.b.dias@durham.ac.uk
Associate Professor
Jorge Morgado
António L. Maçanita
Piotr Pander piotr.h.pander@durham.ac.uk
Academic Visitor
Pedro T. Gomes
Abstract
Six new four-coordinate tetrahedral boron complexes, containing 9-borafluoren-9-yl and diphenylboron cores attached to orthogonal fluorine- and chlorine-substituted 8-quinolinolato ligand chromophores, have been synthesised, characterised, and applied as emitters in organic light-emitting diodes (OLEDs). An extensive steady-state and time-resolved photophysical study, in solution and in the solid state, resulted in the first-time report of delayed fluorescence (DF) in solid films of 8-quinolinolato boron complexes. The DF intensity dependence on excitation dose suggests that this emission originates from triplet–triplet annihilation (TTA). Density functional theory (DFT) and time-dependent density functional theory (TDDFT) studies give insight into the ground and excited state geometries, electronic structures, absorption energies, and singlet–triplet gaps in these new organoboron luminophores. Finally, given their highly luminescent behaviour, organic light-emitting diode (OLED) devices were produced using the synthesised organoboron compounds as emissive fluorescent dopants. The best OLED displays green-blue (λmaxEL = 489 nm) electroluminescence with an external quantum efficiency (EQE) of 3.3% and a maximum luminance of 6300 cd m−2.
Citation
Fialho, C. B., Cruz, T. F. C., Rodrigues, A. I., Calhorda, M. J., Vieira Ferreira, L. F., Dias, F. B., …Gomes, P. T. (2023). 9-Borafluoren-9-yl and diphenylboron tetracoordinate complexes of F- and Cl-substituted 8-quinolinolato ligands: synthesis, molecular and electronic structures, fluorescence and application in OLED devices. Dalton Transactions, 52(15), 4933-4953. https://doi.org/10.1039/d3dt00496a
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 10, 2023 |
Online Publication Date | Mar 10, 2023 |
Publication Date | 2023 |
Deposit Date | Nov 7, 2023 |
Publicly Available Date | Nov 7, 2023 |
Journal | Dalton Transactions |
Print ISSN | 1477-9226 |
Electronic ISSN | 1477-9234 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 52 |
Issue | 15 |
Pages | 4933-4953 |
DOI | https://doi.org/10.1039/d3dt00496a |
Public URL | https://durham-repository.worktribe.com/output/1900198 |
Files
Published Journal Article
(4.1 Mb)
PDF
Licence
http://creativecommons.org/licenses/by-nc/3.0/
Publisher Licence URL
http://creativecommons.org/licenses/by-nc/3.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
You might also like
Electroluminescence of Tetradentate Pt(II) Complexes: O^N^N^O versus C^N^N^O Coordination
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search