Motong Yang
Application of Miller Cycle and Net-Zero Fuel(s) to Diesel Engine: Effect on the Performance and NOx Emissions of a Single-Cylinder Engine
Yang, Motong; Wang, Yaodong
Abstract
Diesel engines play a very significant role in the automotive industry, but the total emissions of diesel engines are more than 1.8 times that of petrol engines. It is therefore important for diesel engines to control emissions. Theoretically, the Miller cycle can be used to achieve NOx reductions by changing the effective compression ratio, while it has become increasingly popular in recent years with the increasing maturity of current turbocharging technology. Based on Ricardo WAVE software, this paper analyses the NOx emissions and engine performance of diesel engines by modelling and simulating their operation under different loads with two types of Miller cycles (EIVC and LIVC) at different degrees. Simulation of engines operating under different loads allows a more comprehensive study of the effects of the Miller cycle on the engine, and a specific analysis in the context of the actual engine operating environment. The result is that both versions of the Miller cycle are most effective in reducing NOx emissions at 10% load, showing a maximum reduction of 21% for EIVC and 37% for LIVC. However, as the Miller cycle decreases engine power, the paper further investigates the application of turbocharger systems in the EIVC Miller cycle, with results showing a 32% increase in brake power at 10% load and −25% EIVC Miller cycle degree. Both ethanol-fueled diesel-cycle and Miller cycle engines were also analyzed, and a reduction in NOx emissions was observed, as well as hydrogen engine performance and NOx emissions.
Citation
Yang, M., & Wang, Y. (2023). Application of Miller Cycle and Net-Zero Fuel(s) to Diesel Engine: Effect on the Performance and NOx Emissions of a Single-Cylinder Engine. Energies, 16(5), Article 2488. https://doi.org/10.3390/en16052488
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 26, 2023 |
Online Publication Date | Mar 6, 2023 |
Publication Date | 2023 |
Deposit Date | Apr 13, 2023 |
Publicly Available Date | Jun 5, 2023 |
Journal | Energies |
Electronic ISSN | 1996-1073 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 16 |
Issue | 5 |
Article Number | 2488 |
DOI | https://doi.org/10.3390/en16052488 |
Public URL | https://durham-repository.worktribe.com/output/1177291 |
Files
Published Journal Article
(8.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
You might also like
The study of a novel magnetic crankshaft
(2024)
Journal Article
Research and innovation identified to decarbonise the maritime sector
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search