Skip to main content

Research Repository

Advanced Search

Using Storm for scaleable sequential statistical inference.

Wilson, S.P.; Mai, T.; Cogan, P.; Bhattacharya, A.; Robles-Sánchez, O.; Aslett, L.J.M.; Ó Ríordáin, S.; Roetzer, G.

Using Storm for scaleable sequential statistical inference. Thumbnail


Authors

S.P. Wilson

T. Mai

P. Cogan

A. Bhattacharya

O. Robles-Sánchez

S. Ó Ríordáin

G. Roetzer



Contributors

Manfred Gilli
Editor

Gil González-Rodríguez
Editor

Alicia Nieto-Reyes
Editor

Abstract

This article describes Storm, an environment for doing streaming data analysis. Two examples of sequential data analysis — computation of a running summary statistic and sequential updating of a posterior distribution — are implemented and their performance is investigated.

Citation

Wilson, S., Mai, T., Cogan, P., Bhattacharya, A., Robles-Sánchez, O., Aslett, L., Ó Ríordáin, S., & Roetzer, G. (2014, December). Using Storm for scaleable sequential statistical inference. Presented at 21st International Conference on Computational Statistics (COMPSTAT 2014), Geneva, Switzerland

Presentation Conference Type Conference Paper (published)
Conference Name 21st International Conference on Computational Statistics (COMPSTAT 2014)
Online Publication Date Aug 19, 2014
Publication Date 2014
Deposit Date Apr 24, 2017
Publicly Available Date Nov 8, 2023
Pages 103-109
Book Title Proceedings of COMPSTAT 2014: 21st International Conference on Computational Statistics (hosting the 5th IASC World Conference): Geneva, Switzerland, August 19–22, 2014.
Public URL https://durham-repository.worktribe.com/output/1147129

Files





You might also like



Downloadable Citations