S.P. Wilson
Using Storm for scaleable sequential statistical inference.
Wilson, S.P.; Mai, T.; Cogan, P.; Bhattacharya, A.; Robles-Sánchez, O.; Aslett, L.J.M.; Ó Ríordáin, S.; Roetzer, G.
Authors
T. Mai
P. Cogan
A. Bhattacharya
O. Robles-Sánchez
Dr Louis Aslett louis.aslett@durham.ac.uk
Associate Professor
S. Ó Ríordáin
G. Roetzer
Contributors
Manfred Gilli
Editor
Gil González-Rodríguez
Editor
Alicia Nieto-Reyes
Editor
Abstract
This article describes Storm, an environment for doing streaming data analysis. Two examples of sequential data analysis — computation of a running summary statistic and sequential updating of a posterior distribution — are implemented and their performance is investigated.
Citation
Wilson, S., Mai, T., Cogan, P., Bhattacharya, A., Robles-Sánchez, O., Aslett, L., Ó Ríordáin, S., & Roetzer, G. (2014, December). Using Storm for scaleable sequential statistical inference. Presented at 21st International Conference on Computational Statistics (COMPSTAT 2014), Geneva, Switzerland
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | 21st International Conference on Computational Statistics (COMPSTAT 2014) |
Online Publication Date | Aug 19, 2014 |
Publication Date | 2014 |
Deposit Date | Apr 24, 2017 |
Publicly Available Date | Nov 8, 2023 |
Pages | 103-109 |
Book Title | Proceedings of COMPSTAT 2014: 21st International Conference on Computational Statistics (hosting the 5th IASC World Conference): Geneva, Switzerland, August 19–22, 2014. |
Public URL | https://durham-repository.worktribe.com/output/1147129 |
Files
Accepted Conference Paper
(1.4 Mb)
PDF
You might also like
Ethical considerations of use of hold-out sets in clinical prediction model management
(2024)
Journal Article
kalis: a modern implementation of the Li & Stephens model for local ancestry inference in R
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search