
Using Storm for scaleable sequential
statistical inference

Simon Wilson, Trinity College Dublin, simon.wilson@tcd.ie
Tiep Mai, Bell Laboratories, Dublin, maik@tcd.ie
Peter Cogan, Amdocs, Dublin, peter.cogan@gmail.com
Arnab Bhattacharya, Trinity College Dublin, bhattaca@tcd.ie
Oscar Robles Sánchez, Universidad Rey Juan Carlos, oscardavid.robles@urjc.es
Louis Aslett, University of Oxford, louis.aslett@stats.ox.ac.uk
Seán Ó’Ŕıordáin, Trinity College Dublin, seoriord@tcd.ie
Gernot Roetzer, Trinity College Dublin, roetzerg@tcd.ie

Abstract. This article describes Storm, an environment for doing streaming data analysis.
Two examples of sequential data analysis — computation of a running summary statistic and
sequential updating of a posterior distribution — are implemented and their performance is
investigated.

Keywords. Storm, sequential inference, streaming data

1 Introduction

In sequential statistical inference, data arrive as a stream and inference is an iterative process
that updates as new data are available. Numerous examples and applications exist, starting with
the Kalman filter and its generalisations such as the dynamic state space model [4]. Approaches
to implement inference in this setting are the subject of much current work e.g. sequential
Monte Carlo [3]. The challenge is not only to work with data sources that require sophisticated
analyses, but also for scaleable inference algorithms that can cope with increased data dimension
and arrival rates.

Computational capabilities for the collection, management and analysis of large volumes of
data continue to increase at a fast rate. Most of the well known internet companies have devel-
oped storage and processing systems that adopt the MapReduce paradigm [2], where scaleability
is achieved by exploiting the availability of many processing units that can work in parallel on
independent tasks, and fault tolerance is achieved by managing these tasks so that they can
be re-assigned to a different processor if a fault is detected. MapReduce implementations of

2 Storm and sequential inference

algorithms are now relatively easy to code with software libraries such as Hadoop [9]. These are
batch computations i.e. a single computation with a pre-defined set of data.

However, analysis of streaming data is becoming another important challenge, for which
Hadoop has not been designed; it treats a sequential analysis as a sequence of batch analyses.
This will typically involve writing data to memory after each batch and then reading it again
which can be very inefficient. To address this, environments such as Storm have been developed.
They aim to permit the programming of analyses of streams of data in a scaleable and reliable
manner that is analogous to MapReduce in many ways.

In the context of statistical analysis, it is natural then to ask what are the advantages of
using a streaming data environment such as Storm to implement sequential statistical inference
algorithms, and for which algorithms are these advantages greatest. In this paper, we describe
a programming environment called Storm [5]. This is one of several such environments for the
processing of streaming data in a distributed manner. It is applied to two examples: computa-
tion of running summary statistics and a grid-based approximation. The performance of these
algorithms is evaluated and discussed with respect to these examples.

2 What is Storm?

Storm is an example of an open source, distributed, fault tolerant framework for the processing
of streaming data. This is achieved via the concept of topologies, a directed acyclic graph which,
at an abstract level, represents both the computation to be performed and the flow of data
through the system. Each datum in the data stream is known as a tuple. Data are introduced
into the topology via spouts, processed by bolts and data flows between them according to
stream groupings. Simply, spouts are sources of data, bolts are functions in the code that have
input variables and produce an output, and the topology shows how the inputs and outputs
of each propagate through the computation according to the stream groupings. Parallelisation
is achieved by setting the number of replications (referred to as tasks) of each spout and bolt.
Storm manages the computational load across the available processors; see [1] for more details.

Storm was initially developed in 2011 by a company called BackType which had been founded
in 2008. BackType was acquired by Twitter in July 2011, and Twitter made Storm open-source
later in September 2011. In September 2013 Storm became an Apache incubation project; this
ensures that the code base of Storm will not be abandoned.

One interesting aspect of the way that Storm manages the data stream concerns guaranteeing
that every tuple that is input into the system, as well as any new tuples that are created from it
during the computation, has been fully processed. This guarantee is implemented by assigning
a unique message id to each tuple generated within a spout. Once it and any tuple generated
from it have been processed then the acknowledgement function ack() is called by the originating
spout. If that does not happen then a fail() function is called and the tuple is reprocessed. The
ack() function can be used for temporal synchronization of ordered data, i.e. the spout can send
the next data tuple when the previous tuple has been fully processed. However, such usage
induces a strong bottleneck in the system as the computation will then move at the rate of the
slowest bolt to process any part of a tuple in each temporal step.

COMPSTAT 2014 Proceedings

Simon Wilson et al. 3

3 Performance Assessment

The performance of a streaming data processing algorithm can be evaluated in several ways, the
most common of which are:

Throughput: This is the average number of tuples processed per unit time.

Latency: This is the average time it takes for a tuple to be processed. Latency may also be
defined for parts of a computation, such as a bolt or combinations of bolts. A special case
is execute latency which is the time taken by the bolts in the topology to process a tuple,
ignoring communication time and other overheads in managing the computation.

Capacity: This is a measure of the proportion of time that Storm spends in processing tuples
with the bolts in the topology, defined as

Capacity =
Execute latency × No. of observations processed

Total computation time
.

A capacity of 1 usually indicates that bolts are overloaded and unable to process data as
quickly as it can be streamed.

These statistics play an important role in scaling the streaming system, and so Storm has a user
interface that allows one to monitor performance of each bolt, spout and processor being used.
A capacity near to 1 indicates a bottleneck of the current system which could be improved with
more computational bolts or cluster machines. Ideally, when scaling an algorithm to make use
of a larger number of processors, one should be able to increase throughput close to linearly
with the number of processors while both latency and capacity remain steady.

4 Example: Computing running summary statistics

In this first example, a stream of bivariate normal observations (x1, y1), (x2, y2), . . . is generated
and the goal is to output the running sample correlation:

rn =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
, n = 2, 3, . . . (1)

Figure 1 shows the topology. On the left, one or more spouts called bvn data simulate bivariate
normal observations. More than one spout may be needed if we are testing the performance
limits of the algorithm because the generation of the data requires more computation than the
computation of the correlation. The data are streamed in groups of size k, with each group
transmitted to only one summary bolt. This assignment of a group to a particular replication
of the summary bolt is done using one of Storm’s standard transmission options called shuffle
stream grouping, where the bolt is chosen at random.

The mth set of k observations Dm = {(xi, yi) | i = (m−1)k+1, . . . ,mk} is sent to a summary
bolt, which computes the five summary statistics

Sm =
mk∑

i=(m−1)k+1

(xi, yi, x
2
i , y

2
i , xiyi)

@ COMPSTAT 2014

4 Storm and sequential inference

summary

collect

summary

summary

bvn
data

bvn
data

bvn
data

Figure 1. The topology for computing the running correlation of a stream of bivariate observa-
tions.

needed to compute the correlation, and then transmits Sm to the collect bolt. The collect
bolt updates the running sum of the summary statistics and uses them to compute the sample
correlation. Defining M = {m |Sm transmitted to collect}, collect will compute and store the 5
summary statistics over all transmitted sets:

S =
∑
m∈M

Sm,

from which it can output the sample correlation, as defined in Equation 1, by

r(M) =
|M |kS5 − S1S2√

|M |kS3 − (S1)2
√
|M |kS4 − (S2)2

.

This example illustrates the issue of synchronisation. There is no guarantee that if M sets of
statistics Sm have arrived to the collect bolt then they are S1, . . . , SM . However as can be seen
above, the indices m of the sets that have been transmitted to collect can also be transmitted
if needed, so that at least one knows which data have been used in the computation of the
correlation.

This topology was implemented on a cluster of 6 machines with a total of 32 cores using
observation groups of size k = 50. Thus for every 50 observations generated, one correlation
value should be transmitted by collect. The throughput of observations and correlations for
different numbers of bvn data spouts and summary bolts was explored. It was observed that
peak throughput occurred when between 8 and 16 bvn data spouts were used per summary
bolt, and so the experiments kept to that ratio. With the ratio of bolts to spouts constant, in
principle the capacity of the algorithm to process observations is constant, and so changes in
performance are due to the overhead involved in managing different numbers of spouts and bolts.
The algorithm was allowed to run for several minutes to eliminate any initialization effects, and
then data were recorded for 6 minutes; throughput is reported as the average output per minute.
Figure 2 shows that, for this cluster, performance begins to deteriorate when more than about

COMPSTAT 2014 Proceedings

Simon Wilson et al. 5

+

+ +

+

+ +

10 20 50 100 200 500

0
50

10
0

15
0

Number of 'bvn data' spouts

G
en

er
at

ed
 o

bs
er

va
tio

ns
 p

er
 m

in
ut

e
(m

ill
io

ns
)

* *

*

*
*

*

+
*

8 spouts per bolt
16 spouts per bolt

+
+

+ + +

+

10 20 50 100 200 500

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

Number of 'bvn data' spouts

E
m

itt
ed

 c
or

re
la

tio
ns

 p
er

 g
en

er
at

ed
 o

bs
er

va
tio

n

*

* * * *

*

+
*

8 spouts per bolt
16 spouts per bolt

Figure 2. Summary of experiments with different numbers of bvn data spouts with a fixed ratio
of spouts to summary bolts. Left: observation throughput as a function of the number of bvn
data spouts. Right: number of correlations emitted per observation generated as a function of
the number of bvn data spouts; the dashed line shows where 1 correlation is emitted for every
k = 50 data points e.g. all data points are being processed.

250 spouts are replicated. Having more bolts does give better performance, but having twice as
many (runs with 8 spouts per bolt) does not give twice the throughput.

5 Example: Sequential posterior computation

A stream of observations x1, x2, . . . is to be fitted to a parametric probability model p(x | θ). It
is assumed that θ is of small enough dimension so that it is possible to compute the posterior
distribution of the parameters on a discrete grid of points Θ. The goal is to sequentially update
the posterior; when xn+1 arrives, the posterior is updated via the Bayes recursion:

p(θ |x1:n+1) ∝ p(θ |x1:n) p(xn+1 | θ),

where x1:n = {x1, . . . , xn}. The output is a stream of sets of posterior distribution values
p(θ |x1:n), θ ∈ Θ for n = 1, 2,

A parallel implementation of this computation is to partition Θ and assign the computation
of the unnormalized log posterior

l(θ) = log(p(θ)) +
n∑

i=1

log(p(xi | θ))

over each part of the partition to bolt replications, where p(θ) is a prior. Let M be the degree
of parallelization available for the computation and let Θ1, . . . ,ΘM be a partition of Θ; load
balancing considerations imply that the Θm should be of similar size.

Figure 3 shows the topology. There are M instances of the logpost bolt; each is assigned
a different subset of the grid Θm over which to store the unnormalized log posterior values
Pm = { l(θ)| θ ∈ Θm}. When a new observation xn+1 arrives, the transmit bolt transmits it to

@ COMPSTAT 2014

6 Storm and sequential inference

logpost

transmit collect

logpost

logpost

Figure 3. The topology for sequential posterior computation.

all M instances of the logpost bolt; this is an all stream grouping, in contrast to the first example,
where data was transmitted to only one summary bolt. The replication that is responsible for
Θm computes log(p(xn+1 | θ)), θ ∈ Θm, and adds it to the corresponding element of Pm. After
every K observations have been processed by the logpost bolts, they transmit Pm to the collect
bolt that then exponentiates and normalises the values to derive the posterior density over the
grid.

An important distinction between this example and the previous one is that the logpost
bolts have state; they must store the current value of the log posterior. If a bolt dies then
that state is lost and can be recovered only by computing the log posterior from scratch on its
partition. Alternatively, the state could be stored and read from memory, but that again implies
an overhead to the computation.

We illustrate this idea for Gaussian data with unknown mean µ and precision τ , so that
θ = (µ, τ) and p(x | θ) = (τ/2π)0.5 exp(−0.5τ(x−µ)2). For this example we assume independent
non-informative Gaussian (zero mean, large variance) and gamma (scale and shape are 0.5) priors
on µ and τ .

This topology was implemented on a cluster of 5 identical machines, each with four 3.4
GHz cores. One million Gaussian observations were generated and stored to a file; the file was
streamed and processed using 4, 8, 12, 16 and 20 logpost bolts. The posterior density was
computed by the collect bolt every K = 50, 000 observations. This value of K was used because
of the large size of the output, given the rate at which data can be processed; with a smaller K
then the input-output time begins to dominates the processing time in the system. A small grid
of size 76 × 86 = 6, 536 and a larger one of 376 × 426 = 160, 176 points were used, with points
distributed as evenly as possible between the bolts. Further, this problem was implemented
in two ways, which we label as ack and nack: with ack, the transmit spout acknowledges that
each observation has been completely processed successfully. When a fail() is called, Storm will
automatically replay the tuple. With nack, no acknowledgement is made.

Figure 4 shows results from these experiments. The left plot shows the median data through-
put over 6 runs as a function of the number of logpost bolts for 3 cases: the small grid with
ack, the small grid with nack and the large grid with nack. As it involves more computation per

COMPSTAT 2014 Proceedings

Simon Wilson et al. 7

0 5 10 15 20 25

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

Number of logpost bolts

D
at

a
th

ro
ug

hp
ut

 (p
er

 s
ec

on
d)

*

*

*
* * *

+

+

+
+ +

+

* * * * * *

+
*
*

ack, small grid
nack, small grid
nack, large grid

0 5 10 15 20 25

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of logpost bolts

C
ap
ac
ity

*

* *

*

*

*

+

+

+
+

+
+

* * * * * *

+
*
*

ack, small grid
nack, small grid
nack, large grid

0 5 10 15 20 25

0.
00

0.
02

0.
04

0.
06

0.
08

Number of logpost bolts

La
te

nc
y

(m
ill

is
ec

on
ds

)

*

*
* * * *

+

+
+ + + +

+

+
+ + + +

+
*
+

execute latency, ack
execute latency, nack
process latency, ack

Figure 4. Performance of the sequential computation of the posterior density of the mean and
precision of a Gaussian distribution as a function of the number of logpost bolts over 6 runs.
From left to right: median data throughput, median latency and median capacity.

observation, the larger grid has a lower data throughput than the smaller grid, hence the data
throughput curves of two datasets are not comparable. Still, they are plot together in Figure
4a for convenience and for the progression of data throughput over number of bolts. There is
a considerable cost to using ack, which grows larger as the number of logpost bolts increases.
Performance worsens considerably in one case from 20 to 24 bolts; the cluster has 20 cores, and
so managing 20 or 24 bolts means 2 or more bolts running on some cores and a computation
overhead results. The capacity plot shows that the larger grid is more efficient in that it spends
more time in computing log likelihoods (the dominant computation in the bolts) rather than
in communication. In the nack small grid case, the capacity is around 0.97 when there are 4
log-post bolts, meaning that each bolt is very busy. This high capacity implies a bottleneck in a
system but, unlike the throughput measurement, it does not measure how fast the system is. In
the nack-small-grid case, when the capacity value is from 0.85 to 1, the system throughput can
be improved significantly by adding more processsing power (bolts). In the nack large grid case,
the capacity is almost 1, which implies that a larger cluster would lead to a faster computation.
Finally, latencies are plotted for 3 cases, all with the small grid: execute latency for ack, execute
latency for nack and process latency for ack. The latency of the big grid is not drawn as it
follows the same pattern but on a different scale (from 1.4ms down to 0.4ms). It can be seen
that the execute latency is slightly longer than the process latency. As with throughput, there
is a considerable overhead in using ack that grows with the number of bolts, and performance
does not improve significantly with more than 16 bolts.

6 Concluding Remarks

In this paper we have introduced Storm and illustrated its use in 2 examples of sequential data
analysis. The topology of the second example, where a function is evaluated on all data at each
point in a discrete grid, is a common scenario. In Bayesian inference, it is often the compu-
tationally most demanding step of the integrated nested Laplace approximation [8]. Another
example where this topology could be used is the griddy Gibb’s sampler [7].

Sequential Monte Carlo methods, such as the particle filter, have a similar structure to
the second example but where the fixed grid is the set of particles. However they have an
important distinction in that the topology has a cycle; results of processing one datum, such as

@ COMPSTAT 2014

8 Storm and sequential inference

particle weights, are needed to process the next. While Storm can implement such topologies,
it introduces potentially difficult issues of synchronization. This has spurred the development
of systems for iterative computation e.g. [6]. For sequential statistical methods like the particle
filter, an interesting question is which will be more effective.

The examples demonstrate the typical properties of a parallel algorithm, with a trade off
between increasing parallelization and the overhead of managing a larger number of processors.
In terms of Storm and its alternatives for streaming computation, we see advantages in terms of
ease of coding, easy scaleability, reliability and the development of interfaces with higher level
languages such as R. It is faster than R, much better suited to streaming data applications than
OpenMP and OpenMPI and much easier to program than a GPU through CUDA.

Acknowledgement

This work was supported by the STATICA project, contract number 08/IN.1/I1879, and the
Insight Centre for Data Analytics, contract number 12/RC/2289. Both are funded by Science
Foundation Ireland.

Bibliography

[1] Bedini, I., S. Sakr, B. Theeten, A. Sala, and P. Cogan (2013). Modeling performance of a
parallel streaming engine: bridging theory and costs. In Proceedings of the International
Conference on Performance Engineering, pp. 173–184.

[2] Dean, J. and S. Ghemawat (2008). MapReduce: simplified data processing on large clusters.
Communications of the ACM 51, 107–113.

[3] Doucet, A., J. de Freitas and N. Gordon (2001). An introduction to sequential Monte
Carlo methods. In A. Doucet, J. de Freitas, and N. Gordon (Eds.), Sequential Monte Carlo
methods in practice. New York: Spinger-Verlag.

[4] Durbin, J. and S. J. Koopman (2001). Time series analysis by state space methods. Oxford
University Press.

[5] Marz, N. (2013). Storm: Distributed and fault-tolerant realtime computation. http:

//storm-project.net.

[6] Murray, D. G., F. McSharry, R. Isaacs, M. Isard, P. Barham and M. Abadi (2013). Naiad:
a timely dataflow system. Proceedings of the 24th ACM Symposium on Operating Systems
Principles, 439–455. New York: ACM.

[7] Ritter, C. and M. Tanner (1992). Facilitating the Gibbs sampler: the Gibbs stopper and
the griddy-Gibbs sampler. Journal of the American Statistical Association 87, 861–868.

[8] Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent
Gaussian models using integrated nested Laplace approximations. Journal of the Royal
Statistical Society, Series B 71 (2), 319–392.

[9] White, T. (2012). Hadoop, the Definitive Guide (Third ed.). Yahoo Press, O’Reilly.

COMPSTAT 2014 Proceedings

http://storm-project.net
http://storm-project.net

	0.5plusplus– Simon Wilson et al.[0.6ex]Using Storm for scaleable sequential statistical inference

