Dr Amir Atapour-Abarghouei amir.atapour-abarghouei@durham.ac.uk
Assistant Professor
Dr Amir Atapour-Abarghouei amir.atapour-abarghouei@durham.ac.uk
Assistant Professor
Professor Toby Breckon toby.breckon@durham.ac.uk
Professor
Monocular depth estimation using novel learning-based approaches has recently emerged as a promising potential alternative to more conventional 3D scene capture technologies within real-world scenarios. Many such solutions often depend on large quantities of ground truth depth data, which is rare and often intractable to obtain. Others attempt to estimate disparity as an intermediary step using a secondary supervisory signal, leading to blurring and other undesirable artefacts. In this paper, we propose a monocular depth estimation approach, which employs a jointly-trained pixel-wise semantic understanding step to estimate depth for individuallyselected groups of objects (segments) within the scene. The separate depth outputs are efficiently fused to generate the final result. This creates more simplistic learning objectives for the jointly-trained individual networks, leading to more accurate overall depth. Extensive experimentation demonstrates the efficacy of the proposed approach compared to contemporary state-of-the-art techniques within the literature.
Atapour-Abarghouei, A., & Breckon, T. (2019). Monocular Segment-Wise Depth: Monocular Depth Estimation Based on a Semantic Segmentation Prior. In 2019 IEEE International Conference on Image Processing (ICIP) ; proceedings (4295-4299). https://doi.org/10.1109/icip.2019.8803551
Conference Name | IEEE International Conference on Image Processing |
---|---|
Conference Location | Taipei, Taiwen |
Start Date | Sep 22, 2019 |
End Date | Sep 25, 2019 |
Acceptance Date | Apr 30, 2019 |
Publication Date | Sep 1, 2019 |
Deposit Date | Jun 4, 2019 |
Publicly Available Date | Nov 12, 2019 |
Pages | 4295-4299 |
Series ISSN | 2381-8549 |
Book Title | 2019 IEEE International Conference on Image Processing (ICIP) ; proceedings. |
DOI | https://doi.org/10.1109/icip.2019.8803551 |
Additional Information | Conference dates September 22-25 2019. Not sure about pub date. IEEE xplore states: Date Added to IEEE Xplore: 26 August 2019 - but that's before the conference. [ |
Accepted Conference Proceeding
(914 Kb)
PDF
Copyright Statement
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption
(2023)
Conference Proceeding
ACR: Attention Collaboration-based Regressor for Arbitrary Two-Hand Reconstruction
(2023)
Conference Proceeding
Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation
(2023)
Conference Proceeding
Region-based Appearance and Flow Characteristics for Anomaly Detection in Infrared Surveillance Imagery
(2023)
Conference Proceeding
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Advanced Search