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ABSTRACT

Monocular depth estimation using novel learning-based ap-
proaches has recently emerged as a promising potential al-
ternative to more conventional 3D scene capture technologies
within real-world scenarios. Many such solutions often de-
pend on large quantities of ground truth depth data, which is
rare and often intractable to obtain. Others attempt to estimate
disparity as an intermediary step using a secondary supervi-
sory signal, leading to blurring and other undesirable arte-
facts. In this paper, we propose a monocular depth estima-
tion approach, which employs a jointly-trained pixel-wise se-
mantic understanding step to estimate depth for individually-
selected groups of objects (segments) within the scene. The
separate depth outputs are efficiently fused to generate the fi-
nal result. This creates more simplistic learning objectives for
the jointly-trained individual networks, leading to more accu-
rate overall depth. Extensive experimentation demonstrates
the efficacy of the proposed approach compared to contem-
porary state-of-the-art techniques within the literature.

Index Terms— Monocular Depth Estimation, Convolu-
tional Neural Networks, Semantic Segmentation

1. INTRODUCTION

As 3D scene understanding is gaining increasing significance
within computer vision applications, accurate and efficient
depth estimation is now an integral part of many such sys-
tems. While strategies such as stereo correspondence [1],
structure from motion [2] and depth from shading and light
diffusion [3, 4] have produced promising results, prevalent is-
sues such as missing values (holes), depth inhomogeneity and
computationally intensive processing or calibration require-
ments are ubiquitous within such approaches [5]. This has
given rise to the necessity of depth refinement post estima-
tion [6, 7, 8]. Recently, novel monocular depth estimation
techniques have emerged as a more effective, economical and
innovative alternative and have received remarkable attention
within the research community [9, 10, 11, 12].

In this work, we propose a model that estimates scene
depth based on a single RGB image (Figure 1) by first seman-
tically understanding the scene and then using the knowledge
to generate depth for carefully selected segments, i.e. groups
of scene objects. These generated segment-wise depth images
are subsequently fused by means of a simple summation op-
eration and the overall consistency is controlled by means of

Fig. 1: An example of the results of our monocular depth
estimation approach (ED) compared to LiDAR ground truth.

an adversarial training procedure as the final step.
Such a training process is enabled by the use of a large-

scale publicly-available dataset of synthetic images [13],
which contains pixel-wise ground truth semantic object la-
bels as well as pixel-perfect synthetic depth. Separating the
depth estimation process for different object groups during
training results in simpler learning objectives for the overall
model leading to improved depth estimation accuracy. This
results in superior performance compared to some of the
most highly-acclaimed approaches within the literature, as
demonstrated by our extensive evaluation (Section 4).

The major contributions of this work are thus as follows:
• Using pixel-level scene segmentation as a prior to en-

hance the performance of monocular depth estimation.
• Utilizing an end-to-end training procedure for an over-

all model capable of estimating depth for individual
groups of scene objects based on a semantic segmen-
tation step jointly trained within the same model.
• A monocular depth estimation approach capable of pro-

ducing accurate dense scene depth.

2. PRIOR WORK

With the emergence of learning-based approaches, signifi-
cant improvements have been made to the state of the art
in the field of monocular depth estimation in recent years.
For instance, in [10], depth is generated by means of a two-
scale network trained on RGB and depth. Other approaches
[14, 15] have also achieved impressive results using a train-
ing procedure directly supervised on real-world depth images
despite the scarcity of ground truth depth for supervision.

Recent work has circumnavigated the need for ground
truth depth by calculating disparity by reconstructing corre-
sponding views within a stereo framework without ground

Source code will be made available post review.



Fig. 2: Overall training (top) and inference (bottom) procedure of our model. The segmentation networks (S) are depicted in
magenta, the depth generators (G) in green, and the discriminator (D) in orange. Loss functions are shown in red.

truth depth. The work in [16] presents a model that gener-
ates the right view from the left image used as the input while
producing an intermediary disparity image. Similarly, [12]
uses bilinear sampling [17] and a left/right consistency check
incorporated into training for improved results.

In [11], depth and camera motion are predicted by training
networks that estimate depth and pose, indirectly supervised
via view synthesis. In [18], the model is trained using sparse
ground truth depth and subsequently enforced within a stereo
framework via an image alignment loss to output dense depth.

There are also supervised approaches [9, 19] that use syn-
thetic images to produce depth outputs. Here, we also employ
synthetic images [13] in a directly supervised training frame-
work to perform the task of monocular depth estimation.

3. PROPOSED APPROACH

Our approach is designed to estimate depth for separate ob-
ject groups that cover the entire scene when put together.
Based on empirical analysis, we opt for decomposing any
scene captured within an urban driving scenario into four
object groups: (1) small and narrow foreground objects (e.g.
pedestrians, road signs, cars) (2) flat surfaces (e.g. roads,
buildings) (3) vegetation (e.g. trees, bushes) (4) background
objects forming the remaining of the scene (other often unla-
belled objects, e.g. a bench on the pavement).

For the sake of notation consistency, we will henceforth

refer to the labels of this object groups as L1, L2, L3 and L4,
respectively. Given an input image, each group is segmented
using a separate segmentation network (S), the outputs of
which are object groups that are subsequently employed to
choose sections of the RGB image passed as inputs to depth
generators (G), producing depth information for each object
group (D1, D2, D3, D4). The entire model is trained as one
entity, end to end (Figure 2). Such a training process is made
possible using a synthetic dataset [13] in which both ground
truth depth and pixel-wise segmentation labels are available
for video sequences of urban driving scenarios.

3.1. Semantic Segmentation

For our segmentation networks (S), we opt for a simple and
efficient fully-supervised training procedure. The RGB im-
age is used as the input to all the networks and each network
outputs class labels for its specific object group. A sigmoid
function along with binary cross-entropy is used as the loss
function for each network:

LBCE = −
1

N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi)), (1)

where N denotes the number of pixels, y the ground truth
label, and p is the predicted probability. This loss function
is calculated for each of the four segmentation networks with
the overall segmentation loss as follows:



Method Error Accuracy

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.253

Direct 0.861 1.894 7.012 0.488 0.683
Implicit 0.404 1.548 6.324 0.308 0.838
Explicit 0.286 1.432 6.122 0.272 0.902

Table 1: Comparing the performance of a single network es-
timating full depth (Direct), depth generators implicitly con-
sidering segments (Implicit) and the full approach (Explicit).

Lseg =

4∑
n=1

λBCEnLBCEn , (2)

where λBCE is the weighting coefficient empirically selected.

3.2. Monocular Depth Estimation
We consider monocular depth estimation as a supervised
image-to-image mapping problem, wherein an input RGB
image is translated into a depth image. More formally, a
depth generator network (G) approximates a mapping func-
tion that takes as its input an RGB image x and outputs a
depth image y, G : x → y. As a result, the objective of the
network should be to produce depth outputs that are as similar
to the ground truth as possible. The most efficient and reliable
solution is to minimize the Euclidean distance between the
pixel values of the output, G(x), and the ground truth depth,
y. This simple reconstruction mechanism forces the model to
generate images that are structurally and contextually close to
the ground truth. In our approach, this reconstruction loss for
the depth generator network G1 (responsible for estimating
the depth for small foreground object) is:

Lrec = ||G1(S1(x)× x)− (S1(x)× y)||1, (3)

where x is the RGB view of the entire scene, S1 the segmen-
tation network (Section 3.1), and y denotes the ground truth
depth. This loss function is similarly calculated for each of
the four segmentation networks, with the overall segmenta-
tion loss as follows:

Ldepth =

4∑
n=1

λrecnLrecn , (4)

where λrec is the weighting coefficient empirically selected.
Once depth is estimated for each individual segment, the

final depth output is obtained by simply summing the partial
depth images generated for each segment. The overall depth
is thus created as follows:

DO =

4∑
n=1

Dn. (5)

With a simple linear operation such as above, there is al-
ways the possibility of undesirable artefacts, such as stitching
effects, over-saturation of depth values and depth inhomo-
geneity, being introduced in the results. To prevent such is-
sues, we introduce an adversarial loss component that ensures
the overall consistency of the final depth image. The result of

Fig. 3: Qualitative comparison of a single network directly
estimating depth (Direct), depth generators implicitly consid-
ering segments (Implicit) and the full approach (Explicit).

the summation operation is used as the input to a discrimina-
tor, inspired by the work in [20], along with the ground depth
overall depth. The gradients from this discriminator are used
in the overall training of the entire model. Given the RGB
input, x, our overall model (GO) generates the entire scene
depth output, GO(x) = ỹ (result of Eqn. 5). Our discrim-
inator (D) is adversarially trained to distinguish fake depth
images produced by the model, ỹ, from ground truth depth, y.
The adversarial loss is thus as follows:

Ladv = min
GO

max
D

E
x,y∼Pd(x,y)

[logD(x, y)]+

E
x∼Pd(x)

[log(1−D(x,GO(x)))],
(6)

where Pd is the data distribution defined by ỹ = GO(x), x the
input and y the ground truth. This loss ensures the fidelity of
the overall depth output with no undesirable artefacts. Subse-
quently, the entirety of the model is trained end to end as one
entity with the overall loss function as follows:

L = Ldepth + Lseg + Ladv. (7)

3.3. Implementation Details

Training data is composed of a large corpus of synthetic im-
ages [13] consisting of RGB, depth and pixel-wise class la-
bels. For the sake of consistency, all the segmentation and
depth generator networks follow a similar encoder-decoder
architecture, containing skip connections [21] between every
pair of corresponding layers in the encoder and the decoder.
Our discriminator follows the architecture of [22] and, sim-
ilar to our segmentation and depth generator networks, uses
convolution-BatchNorm-leaky ReLU (slope = 0.2) modules.

All implementation is done in PyTorch [23], with Adam
[24] providing the best optimization (β1 = 0.5, β2 = 0.999,
α = 0.0001). The weighting coefficients in the loss function
are empirically chosen to be λBCE1 = 100, λBCE2 = 1, λBCE3 =
10, λBCE4 = 1, λrec1 = 100, λrec2 = λrec3 = λrec4 = 10.



Fig. 4: Comparing the results of the approach against [11, 12]. Images have been adjusted for better visualization. DEV: Depth
and Ego-motion from Video [11]; LRC: Left-Right Consistency [12].

4. EXPERIMENTAL RESULTS

We evaluate our approach using ablation studies and both
qualitative and quantitative comparisons with contemporary
methods applied to publicly available datasets [13, 25].

As a crucial part of our work, we attempt to demonstrate
that the complexity introduced within the training and infer-
ence procedure is integral to the overall performance. Conse-
quently, we simplify the model to measure the improvements
made to the approach when an explicit segmentation step is
performed before segment-wise depth estimation.

As a part of our ablation studies, we train a single network
to carry out global scene depth estimation directly without the
influence of any segment-wise segmentation. Secondly, we
remove the explicit segmentation step and train the depth gen-
erator networks to implicitly perform segment-wise depth es-
timation by changing the ground truth they attempt to regress
to. In essence, the ground truth class labels are used to guide
each depth generator to learn to estimate depth for its specific
segment only. Essentially, Eqn. 3 is changed as follows:

Lrec = ||G1(x)− (L1 × y)||1, (8)

where x is the entire RGB image, L1 the ground truth labels
for small foreground objects and y denotes the ground truth
scene depth. The same procedure is used for G2, G3 and G4.
The three resulting models (direct, implicit and explicit) are
tested on randomly selected synthetic images [13].

As seen in Table 1, the implicit model produces promising
results, offering potential future research directions. How-
ever, the explicit model outperforms the direct and implicit
models, demonstrating the positive influence of complexity
over its performance. Likewise, Figure 3 also illustrates the
superiority of our full approach, specifically, when it comes
to small and narrow objects in the scene.

Our approach is also evaluated against contemporary sem-
inal depth estimation approaches [10, 11, 12, 26]. Following
the conventions of the literature, we use the data split sug-
gested in [10] for testing. In our assessments, the generated
depth is corrected for the differences in focal length between
the training [13] and testing data [25]. As seen in Table 2,
our approach outperforms [10, 11, 26] across all metrics and
stays very competitive with [12], with superior performance
across most metrics. All of these comparators are trained and
tested on the same dataset [25] while our approach is trained

Method Error Accuracy

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.253

Train Set Mean [25] 0.403 0.530 8.709 0.488 0.878
Eigen et al. [10] 0.203 1.548 6.307 0.308 0.958
Liu et al. [26] 0.202 1.614 6.523 0.308 0.965

Zhou et al. [11] 0.208 1.768 6.856 0.283 0.957
Godard et al. [12] 0.148 1.344 5.927 0.247 0.964

Our Approach 0.168 1.338 5.702 0.252 0.968

Table 2: Comparing our approach against [10, 26, 11, 12]
using the split in [10]. Comparators are trained and tested on
[25] while our approach is trained on [13] and tested on [25].

on [13] without domain adaptation and has not seen a single
image from [25]. This is indeed very impressive and points
to the generalization capabilities of our approach. We also
experimented with re-training the comparators [11, 12] using
the synthetic dataset, and as expected, our approach offers far
superior performance. These results are not included in the
interest of space (for brevity - RSME: 7.62 [11], 7.24 [12],
6.12 [ours]). As seen in Figure 4, the visual quality of the
results of our approach exceeds that of the comparators. For
better quality results, we kindly invite the reader to view the
supplementary video material accompanying the paper.

5. CONCLUSION AND FUTURE WORK

We propose a novel monocular depth estimation approach that
utilizes a jointly-trained pixel-wise semantic understanding
model to estimate depth for groups of objects. Estimating
depth for scene segments leads to simpler learning objectives,
which results in higher accuracy and better generalization ca-
pabilities. Extensive experimentation demonstrates the effi-
cacy of the proposed approach compared to some of the best-
performing techniques within the literature. Ablation studies
also demonstrate that removing the segmentation step prior
to depth prediction and having the depth generators implic-
itly perform segment-wise depth estimation can also produce
promising results. This is important for future research since
the complexity of the explicit model makes it intractable for
real-time applications (112 ms per one forward pass), while
the implicit model is much closer to the real time (61 ms).
Furthermore, since the model is trained on synthetic data, the
use of domain adaptation may also significantly improve the
performance of the approach on real-world data.
For more information and results, we kindly invite the readers
to refer to the video: https://vimeo.com/336285373.

https://vimeo.com/336285373
https://vimeo.com/336285373
https://vimeo.com/336285373
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