Skip to main content

Research Repository

Advanced Search

Outputs (142)

Climate-informed flood risk mapping using a GAN-based approach (ExGAN) (2024)
Journal Article
Belhajjam, R., Chaqdid, A., Yebari, N., Seaid, M., & Moçayd, N. E. (2024). Climate-informed flood risk mapping using a GAN-based approach (ExGAN). Journal of Hydrology, 638, Article 131487. https://doi.org/10.1016/j.jhydrol.2024.131487

This study develops a class of robust models for flood risk mapping in highly vulnerable regions by focusing on accurately depicting extreme precipitation patterns aligned with regional climates. By implementing sophisticated hydrodynamics modeling a... Read More about Climate-informed flood risk mapping using a GAN-based approach (ExGAN).

An improved splitting algorithm for unsteady generalized Newtonian fluid flow problems with natural boundary conditions (2024)
Journal Article
Obbadi, A., El-Amrani, M., Seaid, M., & Yakoubi, D. (2024). An improved splitting algorithm for unsteady generalized Newtonian fluid flow problems with natural boundary conditions. Computers and Mathematics with Applications, 167, 92-109. https://doi.org/10.1016/j.camwa.2024.05.010

Generalized Newtonian fluids are challenging to solve using the standard projection or fractional-step methods which split the diffusion term from the incompressibility constraint during the time integration process. Most of this class numerical meth... Read More about An improved splitting algorithm for unsteady generalized Newtonian fluid flow problems with natural boundary conditions.

Modelling and simulation of pollution transport in the Mediterranean Sea using enriched finite element method (2024)
Journal Article
El-Amrani, M., Ouardghi, A., & Seaid, M. (2024). Modelling and simulation of pollution transport in the Mediterranean Sea using enriched finite element method. Mathematics and Computers in Simulation, 223, 565-587. https://doi.org/10.1016/j.matcom.2024.04.028

This paper presents a novel numerical method for simulating the transport and dispersion of pollutants in the Mediterranean sea. The governing mathematical equations consist of a barotropic ocean model with friction terms, bathymetric forces, Corioli... Read More about Modelling and simulation of pollution transport in the Mediterranean Sea using enriched finite element method.

Directional enrichment functions for finite element solutions of transient anisotropic diffusion (2024)
Journal Article
Bahssini, A., Izem, N., Mohamed, M. S., & Seaid, M. (in press). Directional enrichment functions for finite element solutions of transient anisotropic diffusion. Computers and Mathematics with Applications, 163, 42-55. https://doi.org/10.1016/j.camwa.2024.03.016

The present study proposes a novel approach for efficiently solving an anisotropic transient diffusion problem using an enriched finite element method. We develop directional enrichment for the finite elements in the spatial discre... Read More about Directional enrichment functions for finite element solutions of transient anisotropic diffusion.

A fully coupled dynamic water-mooring line system: Numerical implementation and applications (2024)
Journal Article
Zheng, X., Seaid, M., & Osman, A. S. (2024). A fully coupled dynamic water-mooring line system: Numerical implementation and applications. Ocean Engineering, 294, Article 116792. https://doi.org/10.1016/j.oceaneng.2024.116792

Several numerical challenges exist in the analysis of water-mooring line systems which require robust, yet practical, methods to address this type of fully coupled nonlinear dynamic problems. The present study proposes a novel class of numerical tech... Read More about A fully coupled dynamic water-mooring line system: Numerical implementation and applications.

Error estimates for a viscosity-splitting scheme in time applied to non-Newtonian fluid flows (2023)
Journal Article
El-Amrani, M., Obbadi, A., Seaid, M., & Yakoubi, D. (2024). Error estimates for a viscosity-splitting scheme in time applied to non-Newtonian fluid flows. Computer Methods in Applied Mechanics and Engineering, 419, Article 116639. https://doi.org/10.1016/j.cma.2023.116639

A time fractional-step method is presented for numerical solutions of the incompressible non-Newtonian fluids for which the viscosity is non-linear depending on the shear-rate magnitude according to a generic model. The method belongs to a class of v... Read More about Error estimates for a viscosity-splitting scheme in time applied to non-Newtonian fluid flows.

A fast and accurate method for transport and dispersion of phosphogypsum in coastal zones: Application to Jorf Lasfar (2023)
Journal Article
Ouardghi, A., Seaid, M., El‐Amrani, M., & El Mocayd, N. (2023). A fast and accurate method for transport and dispersion of phosphogypsum in coastal zones: Application to Jorf Lasfar. International Journal for Numerical Methods in Fluids, https://doi.org/10.1002/fld.5248

We present a numerical method for modelling and simulation of transport and dispersion of phosphogypsum in the Jorf Lasfar coastal zone located on the Atlantic Ocean at Morocco. The governing equations consist of the well-established barotropic ocean... Read More about A fast and accurate method for transport and dispersion of phosphogypsum in coastal zones: Application to Jorf Lasfar.

Convergence analysis of a class of iterative methods for propagation of reaction fronts in porous media (2023)
Journal Article
Salhi, L., Seaid, M., & Yakoubi, D. (2024). Convergence analysis of a class of iterative methods for propagation of reaction fronts in porous media. Computer Methods in Applied Mechanics and Engineering, 418(Part A), Article 116524. https://doi.org/10.1016/j.cma.2023.116524

We present an iterative scheme for the numerical analysis of propagating reaction front problems in porous media satisfying an Arrhenius-type law. The governing equations consist of the Darcy equations for the pressure and flow field coupled to two c... Read More about Convergence analysis of a class of iterative methods for propagation of reaction fronts in porous media.

A material point/finite volume method for coupled shallow water flows and large dynamic deformations in seabeds (2023)
Journal Article
Zheng, X., Seaid, M., Pisanò, F., Hicks, M. A., Vardon, P. J., Huvaj, N., & Osman, A. S. (2023). A material point/finite volume method for coupled shallow water flows and large dynamic deformations in seabeds. Computers and Geotechnics, 162(October), Article 105673. https://doi.org/10.1016/j.compgeo.2023.105673

A hybrid material point/finite volume method for the numerical simulation of shallow water waves caused by large dynamic deformations in the bathymetry is presented. The proposed model consists of coupling the nonlinear shallow water equations for th... Read More about A material point/finite volume method for coupled shallow water flows and large dynamic deformations in seabeds.