Skip to main content

Research Repository

Advanced Search

Outputs (107)

INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations (2022)
Presentation / Conference Contribution
Yu, J., Cristea, A. I., Harit, A., Sun, Z., Aduragba, O. T., Shi, L., & Al Moubayed, N. (2022, July). INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations. Presented at 2022 International Joint Conference on Neural Networks (IJCNN), Padova, Italy

XAI with natural language processing aims to produce human-readable explanations as evidence for AI decisionmaking, which addresses explainability and transparency. However, from an HCI perspective, the current approaches only focus on delivering a s... Read More about INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations.

Efficient Uncertainty Quantification for Multilabel Text Classification (2022)
Presentation / Conference Contribution
Yu, J., Cristea, A. I., Harit, A., Sun, Z., Aduragba, O. T., Shi, L., & Al Moubayed, N. (2022, July). Efficient Uncertainty Quantification for Multilabel Text Classification. Presented at 2022 International Joint Conference on Neural Networks (IJCNN), Padova, Italy

Despite rapid advances of modern artificial intelligence (AI), there is a growing concern regarding its capacity to be explainable, transparent, and accountable. One crucial step towards such AI systems involves reliable and efficient uncertainty qua... Read More about Efficient Uncertainty Quantification for Multilabel Text Classification.

Adopting Automatic Machine Learning for Temporal Prediction of Paid Certification in MOOCs (2022)
Book Chapter
Alshehri, M., Alamri, A., & Cristea, A. I. (2022). Adopting Automatic Machine Learning for Temporal Prediction of Paid Certification in MOOCs. In M. Mercedes Rodrigo, N. Matsuda, A. I. Cristea, & V. Dimitrova (Eds.), Artificial Intelligence in Education (717-723). Springer Verlag. https://doi.org/10.1007/978-3-031-11644-5_73

Massive Open Online Course (MOOC) platforms have been growing exponentially, offering worldwide low-cost educational content. Recent literature on MOOC learner analytics has been carried out around predicting either students’ dropout, academic perfor... Read More about Adopting Automatic Machine Learning for Temporal Prediction of Paid Certification in MOOCs.

Fine-grained Main Ideas Extraction and Clustering of Online Course Reviews (2022)
Book Chapter
Xiao, C., Shi, L., Cristea, A., Li, Z., & Pan, Z. (2022). Fine-grained Main Ideas Extraction and Clustering of Online Course Reviews. In M. Rodrigo, N. Matsuda, A. Cristea, & V. Dimitrova (Eds.), Artificial Intelligence in Education (294-306). Springer, Cham. https://doi.org/10.1007/978-3-031-11644-5_24

Online course reviews have been an essential way in which course providers could get insights into students’ perceptions about the course quality, especially in the context of massive open online courses (MOOCs), where it is hard for both parties to... Read More about Fine-grained Main Ideas Extraction and Clustering of Online Course Reviews.

Balancing Fined-Tuned Machine Learning Models Between Continuous and Discrete Variables - A Comprehensive Analysis Using Educational Data (2022)
Book Chapter
Drousiotis, E., Pentaliotis, P., Shi, L., & Cristea, A. I. (2022). Balancing Fined-Tuned Machine Learning Models Between Continuous and Discrete Variables - A Comprehensive Analysis Using Educational Data. In Artificial Intelligence in Education (256-268). Springer, Cham. https://doi.org/10.1007/978-3-031-11644-5_21

Along with the exponential increase of students enrolling in MOOCs [26] arises the problem of a high student dropout rate. Researchers worldwide are interested in predicting whether students will drop out of MOOCs to prevent it. This study explores a... Read More about Balancing Fined-Tuned Machine Learning Models Between Continuous and Discrete Variables - A Comprehensive Analysis Using Educational Data.

A Good Classifier is Not Enough: A XAI Approach for Urgent Instructor-Intervention Models in MOOCs (2022)
Book Chapter
Alrajhi, L., Pereira, F. D., Cristea, A. I., & Aljohani, T. (2022). A Good Classifier is Not Enough: A XAI Approach for Urgent Instructor-Intervention Models in MOOCs. In M. Mercedes Rodrigo, N. Matsuda, A. I. Cristea, & V. Dimitrova (Eds.), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium (424-427). Springer Verlag. https://doi.org/10.1007/978-3-031-11647-6_84

Deciding upon instructor intervention based on learners’ comments that need an urgent response in MOOC environments is a known challenge. The best solutions proposed used automatic machine learning (ML) models to predict the urgency. These are ‘black... Read More about A Good Classifier is Not Enough: A XAI Approach for Urgent Instructor-Intervention Models in MOOCs.

An AI-Based Feedback Visualisation System for Speech Training (2022)
Book Chapter
Wynn, A. T., Wang, J., Umezawa, K., & Cristea, A. I. (2022). An AI-Based Feedback Visualisation System for Speech Training. In M. Mercedes Rodrigo, N. Matsuda, A. I. Cristea, & V. Dimitrova (Eds.), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium (510-514). Springer Verlag. https://doi.org/10.1007/978-3-031-11647-6_104

This paper proposes providing automatic feedback to support public speech training. For the first time, speech feedback is provided on a visual dashboard including not only the transcription and pitch information, but also emotion information. A meth... Read More about An AI-Based Feedback Visualisation System for Speech Training.

Bi-directional Mechanism for Recursion Algorithms: A Case Study on Gender Identification in MOOCs (2022)
Book Chapter
Aljohani, T., Cristea, A. I., & Alrajhi, L. (2022). Bi-directional Mechanism for Recursion Algorithms: A Case Study on Gender Identification in MOOCs. In M. Mercedes Rodrigo, N. Matsuda, A. I. Cristea, & V. Dimitrova (Eds.), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium (396-399). Springer Verlag. https://doi.org/10.1007/978-3-031-11647-6_78

Automatically identifying the learner gender, which serves as this paper’s focus, can provide valuable information to personalised learners’ experiences in MOOCs. However, extracting the gender from learner-generated data (discussion forum) is a chal... Read More about Bi-directional Mechanism for Recursion Algorithms: A Case Study on Gender Identification in MOOCs.

MOOCs Paid Certification Prediction Using Students Discussion Forums (2022)
Book Chapter
Alshehri, M., & Cristea, A. I. (2022). MOOCs Paid Certification Prediction Using Students Discussion Forums. In M. Mercedes Rodrigo, N. Matsuda, A. I. Cristea, & V. Dimitrova (Eds.), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium (542-545). Springer Verlag. https://doi.org/10.1007/978-3-031-11647-6_111

Massive Open Online Courses (MOOCs) have been suffering a very level of low course certification (less than 1% of the total number of enrolled students on a given online course opt to purchase its certificate), although MOOC platforms have been offer... Read More about MOOCs Paid Certification Prediction Using Students Discussion Forums.

SimStu-Transformer: A Transformer-Based Approach to Simulating Student Behaviour (2022)
Book Chapter
Li, Z., Shi, L., Cristea, A., Zhou, Y., Xiao, C., & Pan, Z. (2022). SimStu-Transformer: A Transformer-Based Approach to Simulating Student Behaviour. In Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium (348-351). Springer, Cham. https://doi.org/10.1007/978-3-031-11647-6_67

Lacking behavioural data between students and an Intelligent Tutoring System (ITS) has been an obstacle for improving its personalisation capability. One feasible solution is to train “sim students”, who simulate real students’ behaviour in the ITS.... Read More about SimStu-Transformer: A Transformer-Based Approach to Simulating Student Behaviour.