Skip to main content

Research Repository

Advanced Search

First On-Sky Demonstration of a Scintillation Correction technique using Tomographic Wavefront Sensing (2023)
Journal Article
Hartley, K. E., Farley, O. J., Townson, M. J., Osborn, J., & Wilson, R. (2023). First On-Sky Demonstration of a Scintillation Correction technique using Tomographic Wavefront Sensing. Monthly Notices of the Royal Astronomical Society, 520(3), 4134-4146. https://doi.org/10.1093/mnras/stad420

Scintillation noise significantly limits high precision ground-based photometry of bright stars. In this paper we present the first ever on-sky demonstration of scintillation correction. The technique uses tomographic wavefront sensing to estimate th... Read More about First On-Sky Demonstration of a Scintillation Correction technique using Tomographic Wavefront Sensing.

SHIMM: a versatile seeing monitor for astronomy (2023)
Journal Article
Perera, S., Wilson, R. W., Butterley, T., Osborn, J., Farley, O. J., & Laidlaw, D. J. (2023). SHIMM: a versatile seeing monitor for astronomy. Monthly Notices of the Royal Astronomical Society, 520(4), 5475-5486. https://doi.org/10.1093/mnras/stad339

Characterization of atmospheric optical turbulence is crucial for the design and operation of modern ground-based optical telescopes. In particular, the effective application of adaptive optics correction on large and extremely large telescopes relie... Read More about SHIMM: a versatile seeing monitor for astronomy.

Demonstrating 24-hour continuous vertical monitoring of atmospheric optical turbulence (2023)
Journal Article
Griffiths, R., Osborn, J., Farley, O., Butterley, T., Townson, M. J., & Wilson, R. (2023). Demonstrating 24-hour continuous vertical monitoring of atmospheric optical turbulence. Optics Express, 31(4), 6730-6740. https://doi.org/10.1364/oe.479544

We report what is believed to be the first example of fully continuous, 24-hour vertical monitoring of atmospheric optical turbulence. This is achieved using a novel instrument, the 24-hour Shack-Hartmann Image Motion Monitor (24hSHIMM). Optical turb... Read More about Demonstrating 24-hour continuous vertical monitoring of atmospheric optical turbulence.

Automated wind velocity profiling from adaptive optics telemetry (2019)
Journal Article
Laidlaw, D. J., Osborn, J., Morris, T. J., Basden, A. G., Gendron, E., Rousset, G., …Wilson, R. W. (2020). Automated wind velocity profiling from adaptive optics telemetry. Monthly Notices of the Royal Astronomical Society, 491(1), 1287-1294. https://doi.org/10.1093/mnras/stz3062

Ground-based adaptive optics (AO) systems can use temporal control techniques to greatly improve image resolution. A measure of wind velocity as a function of altitude is needed to minimize the temporal errors associated with these systems. Spatio-te... Read More about Automated wind velocity profiling from adaptive optics telemetry.

Atmospheric scintillation noise in ground-based exoplanet photometry (2019)
Journal Article
Föhring, D., Wilson, R., Osborn, J., & Dhillon, V. (2019). Atmospheric scintillation noise in ground-based exoplanet photometry. Monthly Notices of the Royal Astronomical Society, 489(4), 5098-5108. https://doi.org/10.1093/mnras/stz2444

Atmospheric scintillation caused by optical turbulence in the Earth’s atmosphere can be the dominant source of noise in ground-based photometric observations of bright targets, which is a particular concern for ground-based exoplanet transit photomet... Read More about Atmospheric scintillation noise in ground-based exoplanet photometry.

Identifying optical turbulence profiles for realistic tomographic error in adaptive optics (2019)
Journal Article
Farley, O., Osborn, J., Morris, T., Fusco, T., Neichel, B., Correia, C., & Wilson, R. (2019). Identifying optical turbulence profiles for realistic tomographic error in adaptive optics. Monthly Notices of the Royal Astronomical Society, 488(1), 213-221. https://doi.org/10.1093/mnras/stz1669

For extremely large telescopes, adaptive optics will be required to correct the Earth’s turbulent atmosphere. The performance of tomographic adaptive optics is strongly dependent on the vertical distribution (profile) of this turbulence. An important... Read More about Identifying optical turbulence profiles for realistic tomographic error in adaptive optics.

Optimizing the accuracy and efficiency of optical turbulence profiling using adaptive optics telemetry for extremely large telescopes (2018)
Journal Article
Laidlaw, D. J., Osborn, J., Morris, T. J., Basden, A. G., Beltramo-Martin, O., Butterley, T., …Wilson, R. W. (2018). Optimizing the accuracy and efficiency of optical turbulence profiling using adaptive optics telemetry for extremely large telescopes. Monthly Notices of the Royal Astronomical Society, 483(4), 4341-4353. https://doi.org/10.1093/mnras/sty3285

Advanced adaptive optics (AO) instruments on ground-based telescopes require accurate knowledge of the atmospheric turbulence strength as a function of altitude. This information assists point spread function reconstruction, AO temporal control techn... Read More about Optimizing the accuracy and efficiency of optical turbulence profiling using adaptive optics telemetry for extremely large telescopes.

Representative optical turbulence profiles for ESO Paranal by hierarchical clustering (2018)
Journal Article
Farley, O., Osborn, J., Morris, T., Sarazin, M., Butterley, T., Townson, M., …Wilson, R. (2018). Representative optical turbulence profiles for ESO Paranal by hierarchical clustering. Monthly Notices of the Royal Astronomical Society, 481(3), 4030-4037. https://doi.org/10.1093/mnras/sty2536

Knowledge of the optical turbulence profile is important in adaptive optics (AO) systems, particularly tomographic AO systems such as those to be employed by the next generation of 40-m class extremely large telescopes. Site characterization and moni... Read More about Representative optical turbulence profiles for ESO Paranal by hierarchical clustering.

Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT (2018)
Journal Article
Osborn, J., Wilson, R., Sarazin, M., Butterley, T., Chacon, A., Derie, F., …Townson, M. (2018). Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT. Monthly Notices of the Royal Astronomical Society, 478(1), 825-834. https://doi.org/10.1093/mnras/sty1070

Knowledge of the Earth’s atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimisation of existing systems but it is required for the design of future instruments. As a... Read More about Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT.

Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR (2016)
Journal Article
Osborn, J., Butterley, T., Townson, M., Reeves, A., Morris, T., & Wilson, R. (2017). Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR. Monthly Notices of the Royal Astronomical Society, 464(4), 3998-4007. https://doi.org/10.1093/mnras/stw2685

As telescopes become larger, into the era of ∼40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmo... Read More about Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR.

Atmospheric scintillation in astronomical photometry (2015)
Journal Article
Osborn, J., Föhring, D., Dhillon, V., & Wilson, R. (2015). Atmospheric scintillation in astronomical photometry. Monthly Notices of the Royal Astronomical Society, 452(2), 1707-1716. https://doi.org/10.1093/mnras/stv1400

Scintillation noise due to the Earth's turbulent atmosphere can be a dominant noise source in high-precision astronomical photometry when observing bright targets from the ground. Here we describe the phenomenon of scintillation from its physical ori... Read More about Atmospheric scintillation in astronomical photometry.

Stereo-SCIDAR: optical turbulence profiling with high sensitivity using a modified SCIDAR instrument (2013)
Journal Article
Shepherd, H., Osborn, J., Wilson, R., Butterley, T., Avila, R., Dhillon, V., & Morris, T. (2014). Stereo-SCIDAR: optical turbulence profiling with high sensitivity using a modified SCIDAR instrument. Monthly Notices of the Royal Astronomical Society, 437(4), 3568-3577. https://doi.org/10.1093/mnras/stt2150

The next generation of adaptive optics systems will require tomographic reconstruction techniques to map the optical refractive index fluctuations, generated by the atmospheric turbulence, along the line of sight to the astronomical target. These sys... Read More about Stereo-SCIDAR: optical turbulence profiling with high sensitivity using a modified SCIDAR instrument.

Conjugate-plane photometry: reducing scintillation in ground-based photometry (2011)
Journal Article
Osborn, J., Wilson, R. W., Dhillon, V., Avila, R., & Love, G. D. (2011). Conjugate-plane photometry: reducing scintillation in ground-based photometry. Monthly Notices of the Royal Astronomical Society, 411(2), 1223-1230. https://doi.org/10.1111/j.1365-2966.2010.17759.x

High-precision fast photometry from ground-based observatories is a challenge due to intensity fluctuations (scintillation) produced by the Earth's atmosphere. Here we describe a method to reduce the effects of scintillation by a combination of pupil... Read More about Conjugate-plane photometry: reducing scintillation in ground-based photometry.

Profiling the surface layer of optical turbulence with SLODAR (2010)
Journal Article
Osborn, J., Wilson, R., Butterley, T., Shepherd, H., & Sarazin, M. (2010). Profiling the surface layer of optical turbulence with SLODAR. Monthly Notices of the Royal Astronomical Society, 406(2), 1405-1408. https://doi.org/10.1111/j.1365-2966.2010.16795.x

A prototype of a new SLope Detection And Ranging (SLODAR) instrument for atmospheric optical turbulence profiling has been developed by the Centre for Advanced Instrumentation at Durham University. The instrument targets double stars with wide separa... Read More about Profiling the surface layer of optical turbulence with SLODAR.