Skip to main content

Research Repository

Advanced Search

Collectively encoded Rydberg qubit (2021)
Journal Article
Spong, N. L., Jiao, Y., Hughes, O. D., Weatherill, K. J., Lesanovsky, I., & Adams, C. S. (2021). Collectively encoded Rydberg qubit. Physical Review Letters, 127(6), Article 063604. https://doi.org/10.1103/physrevlett.127.063604

We demonstrate a collectively-encoded qubit based on a single Rydberg excitation stored in an ensemble of N entangled atoms. Qubit rotations are performed by applying microwave fields that drive excitations between Rydberg states. Coherent read-out i... Read More about Collectively encoded Rydberg qubit.

Photon correlation transients in a weakly blockaded Rydberg ensemble (2020)
Journal Article
Möhl, C., Spong, N. L., Yuechun, J., So, C., Ilieva, T., Weidemüller, M., & Adams, C. S. (2020). Photon correlation transients in a weakly blockaded Rydberg ensemble. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(8), Article 084005. https://doi.org/10.1088/1361-6455/ab728f

The nonlinear and non-local effects in atomic Rydberg media under electromagnetically induced transparency (EIT) make it a versatile platform for fundamental studies and applications in quantum information. In this paper, we study the dynamics of a R... Read More about Photon correlation transients in a weakly blockaded Rydberg ensemble.

Measuring the Faraday effect in olive oil using permanent magnets and Malus' law (2020)
Journal Article
Carr, D. L., Spong, N. L., Hughes, I. G., & Adams, C. S. (2020). Measuring the Faraday effect in olive oil using permanent magnets and Malus' law. European Journal of Physics, 41(2), Article 025301. https://doi.org/10.1088/1361-6404/ab50dd

We present a simple permanent magnet set-up that can be used to measure the Faraday effect in gases, liquids and solids. By fitting the transmission curve as a function of polarizer angle (Malus' law) we average over short-term fluctuations in the la... Read More about Measuring the Faraday effect in olive oil using permanent magnets and Malus' law.

Zeeman-tunable modulation transfer spectroscopy (2019)
Journal Article
So, C., Spong, N. L., Möhl, C., Jiao, Y., Ilieva, T., & Adams, C. S. (2019). Zeeman-tunable modulation transfer spectroscopy. Optics Letters, 44(21), 5374-5377. https://doi.org/10.1364/ol.44.005374

Active frequency stabilization of a laser to an atomic or molecular resonance underpins many modern-day AMO physics experiments. With a flat background and high signal-to-noise ratio, modulation transfer spectroscopy (MTS) offers an accurate and stab... Read More about Zeeman-tunable modulation transfer spectroscopy.