Skip to main content

Research Repository

Advanced Search

High-resolution nanosecond spectroscopy of even-parity Rydberg excitons in Cu2O (2022)
Journal Article
Rogers, J. P., Gallagher, L. A., Pizzey, D., Pritchett, J. D., Adams, C. S., Jones, M. P., …Lynch, S. A. (2022). High-resolution nanosecond spectroscopy of even-parity Rydberg excitons in Cu2O. Physical Review B, 105(11), Article 115206. https://doi.org/10.1103/physrevb.105.115206

We present a study of even-parity Rydberg exciton states in cuprous oxide using second harmonic generation (SHG) spectroscopy. Excitonic states with principal quantum number n = 5 − 12 were excited by nanosecond pulses around 1143 nm. Using time-reso... Read More about High-resolution nanosecond spectroscopy of even-parity Rydberg excitons in Cu2O.

Rydberg excitons in synthetic cuprous oxide Cu2O (2021)
Journal Article
Lynch, S. A., Hodges, C., Mandal, S., Langbein, W., Singh, R. P., Gallagher, L. A., …Jones, M. P. (2021). Rydberg excitons in synthetic cuprous oxide Cu2O. Physical Review Materials, 5(8), Article 084602. https://doi.org/10.1103/physrevmaterials.5.084602

High-lying Rydberg states of Mott-Wannier excitons are receiving considerable interest due to the possibility of adding long-range interactions to the physics of excitons. Here, we study Rydberg excitation in bulk synthetic cuprous oxide grown by the... Read More about Rydberg excitons in synthetic cuprous oxide Cu2O.

Microwave-optical coupling via Rydberg excitons in cuprous oxide (2021)
Journal Article
Gallagher, L. A., Rogers, J. P., Pritchett, J. D., Mistry, R. A., Pizzey, D., Adams, C. S., …Lynch, S. A. (2022). Microwave-optical coupling via Rydberg excitons in cuprous oxide. Physical Review Research, 4(1), https://doi.org/10.1103/physrevresearch.4.013031

We report exciton-mediated coupling between microwave and optical fields in cuprous oxide (Cu2O) at low temperatures. Rydberg excitonic states with principal quantum number up to n = 12 were observed at 4 K using both one-photon (absorption) and two-... Read More about Microwave-optical coupling via Rydberg excitons in cuprous oxide.