Skip to main content

Research Repository

Advanced Search

Enhanced Lifetime of organic photovoltaic diodes utilizing a ternary blend including an insulating polymer (2016)
Journal Article
AL-Busaidi, Z., Pearson, C., Groves, C., & Petty, M. (2016). Enhanced Lifetime of organic photovoltaic diodes utilizing a ternary blend including an insulating polymer. Solar Energy Materials and Solar Cells, 160, 101-106. https://doi.org/10.1016/j.solmat.2016.10.018

We report on the lifetime of unencapsulated organic photovoltaic diodes (OPVs) based on a ternary blend of poly(3-hexylthiophene) (P3HT), phenyl-C61-butyric acid methyl ester (PCBM) and a soft insulating polymer, poly(methyl methacrylate) (PMMA) as c... Read More about Enhanced Lifetime of organic photovoltaic diodes utilizing a ternary blend including an insulating polymer.

Evolution of Electronic Circuits using Carbon Nanotube Composites (2016)
Journal Article
Massey, M., Kotsialos, A., Volpati, D., Vissol-Gaudin, E., Pearson, C., Bowen, L., …Petty, M. (2016). Evolution of Electronic Circuits using Carbon Nanotube Composites. Scientific Reports, 6, Article 32197. https://doi.org/10.1038/srep32197

Evolution-in-materio concerns the computer controlled manipulation of material systems using external stimuli to train or evolve the material to perform a useful function. In this paper we demonstrate the evolution of a disordered composite material,... Read More about Evolution of Electronic Circuits using Carbon Nanotube Composites.

Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evolutionary Algorithms (2016)
Conference Proceeding
Vissol-Gaudin, E., Kotsialos, A., Massey, M., Zeze, D., Pearson, C., Groves, C., & Petty, M. (2016). Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evolutionary Algorithms. In M. Amos, & A. Condon (Eds.), Unconventional computation and natural computation : 15th International Conference, UCNC 2016, Manchester, UK, July 11-15, 2016 ; proceedings (130-141). https://doi.org/10.1007/978-3-319-41312-9_11

Evolution-in-Materio uses evolutionary algorithms (EA) to exploit the physical properties of unconfigured, physically rich materials, in effect transforming them into information processors. The potential of this technique for machine learning proble... Read More about Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evolutionary Algorithms.