Skip to main content

Research Repository

Advanced Search

Zinc Phthalocyanine Sensing Mechanism Quantification for Potential Application in Chemical Warfare Agent Detectors (2022)
Journal Article
Powroźnik, P., Solecka, B., Pander, P., Jakubik, W., Dias, F. B., & Krzywiecki, M. (2022). Zinc Phthalocyanine Sensing Mechanism Quantification for Potential Application in Chemical Warfare Agent Detectors. Sensors, 22(24), Article 9947. https://doi.org/10.3390/s22249947

Rapid and accurate detection of lethal volatile compounds is an emerging requirement to ensure the security of the current and future society. Since the threats are becoming more complex, the assurance of future sensing devices’ performance can be ob... Read More about Zinc Phthalocyanine Sensing Mechanism Quantification for Potential Application in Chemical Warfare Agent Detectors.

Near-infrared electroluminescence beyond 940 nm in Pt(N^C^N)X complexes: influencing aggregation with the ancillary ligand X (2022)
Journal Article
Salthouse, R. J., Pander, P., Yufit, D. S., Dias, F. B., & Williams, J. G. (2022). Near-infrared electroluminescence beyond 940 nm in Pt(N^C^N)X complexes: influencing aggregation with the ancillary ligand X. Chemical Science, 13(45), 13600-13610. https://doi.org/10.1039/d2sc05023d

We present a study of aggregate excited states formed by complexes of the type Pt(N^C^N)X, where N^C^N represents a tridentate cyclometallating ligand, and X = SCN or I. These materials display near-infrared (NIR) photoluminescence in film and electr... Read More about Near-infrared electroluminescence beyond 940 nm in Pt(N^C^N)X complexes: influencing aggregation with the ancillary ligand X.

Excimer or aggregate? Near infrared electro- and photoluminescence from multimolecular excited states of N^C^N-coordinated platinum(ii) complexes (2022)
Journal Article
Pander, P., Sil, A., Salthouse, R. J., Harris, C. W., Walden, M. T., Yufit, D. S., …Dias, F. B. (2022). Excimer or aggregate? Near infrared electro- and photoluminescence from multimolecular excited states of N^C^N-coordinated platinum(ii) complexes. Journal of Materials Chemistry C Materials for optical and electronic devices, 10(40), 15084-15095. https://doi.org/10.1039/d2tc01511k

We present an experimental and theoretical study of aggregate excited states formed by complexes of the type Pt(N^C^N)Cl, which display near-infrared (NIR) photoluminescence in film and NIR electroluminescence in OLED devices. Here, N^C^N represents... Read More about Excimer or aggregate? Near infrared electro- and photoluminescence from multimolecular excited states of N^C^N-coordinated platinum(ii) complexes.

Delayed Fluorescence by Triplet–Triplet Annihilation from Columnar Liquid Crystal Films (2022)
Journal Article
Gomes Franca, L., dos Santos, P. L., Pander, P., Cabral, M. G., Cristiano, R., Cazati, T., …Eccher, J. (2022). Delayed Fluorescence by Triplet–Triplet Annihilation from Columnar Liquid Crystal Films. ACS Applied Electronic Materials, 4(7), https://doi.org/10.1021/acsaelm.2c00432

Delayed fluorescence (DF) by triplet–triplet annihilation (TTA) is observed in solutions of a benzoperylene-imidoester mesogen that shows a hexagonal columnar mesophase at room temperature in the neat state. A similar benzoperylene-imide with a sligh... Read More about Delayed Fluorescence by Triplet–Triplet Annihilation from Columnar Liquid Crystal Films.

Novel Easy to Synthesize Benzonitrile Compounds with Mixed Carbazole and Phenoxazine Substituents Exhibiting Dual Emission and TADF Properties (2022)
Journal Article
Maggiore, A., Qu, Y., Guillot, R., Pander, P., Vasylieva, M., Data, P., …Miomandre, F. (2022). Novel Easy to Synthesize Benzonitrile Compounds with Mixed Carbazole and Phenoxazine Substituents Exhibiting Dual Emission and TADF Properties. Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 126(14), 2740-2753. https://doi.org/10.1021/acs.jpcb.2c00219

The photophysical and electrochemical properties of a new class of fluorinated benzonitrile compounds substituted with mixed phenoxazine and carbazole units have been investigated. When absorbing in a large range of the UV–vis spectrum due to both lo... Read More about Novel Easy to Synthesize Benzonitrile Compounds with Mixed Carbazole and Phenoxazine Substituents Exhibiting Dual Emission and TADF Properties.

The Role of Dinuclearity in Promoting Thermally Activated Delayed Fluorescence (TADF) in Cyclometallated, N^C^N-coordinated Platinum(II) Complexes (2021)
Journal Article
Pander, P. H., Zaytsev, A., Sil, A., Williams, J. G., Lanoë, P., Kozhevnikov, V. N., & Dias, F. B. (2021). The Role of Dinuclearity in Promoting Thermally Activated Delayed Fluorescence (TADF) in Cyclometallated, N^C^N-coordinated Platinum(II) Complexes. Journal of Materials Chemistry C Materials for optical and electronic devices, 9(32), 10276-10287. https://doi.org/10.1039/d1tc02562g

In this work we present synthesis and an in-depth photophysical analysis of a di-Pt(II) complex with a ditopic bis-N^C^N ligand. The complex exhibits a dual luminescent behaviour by emitting simultaneously delayed fluorescence and phosphorescence. By... Read More about The Role of Dinuclearity in Promoting Thermally Activated Delayed Fluorescence (TADF) in Cyclometallated, N^C^N-coordinated Platinum(II) Complexes.

Acridone-amine D-A-D thermally activated delayed fluorescence emitters with narrow resolved electroluminescence and their electrochromic properties (2021)
Journal Article
Vasylieva, M., Pander, P., Sharma, B. K., Shaikh, A. M., Kamble, R. M., Dias, F. B., …Data, P. (2021). Acridone-amine D-A-D thermally activated delayed fluorescence emitters with narrow resolved electroluminescence and their electrochromic properties. Electrochimica Acta, 384, Article 138487. https://doi.org/10.1016/j.electacta.2021.138347

Acridones have found their role in luminescent materials for OLEDs. Most interestingly, showing potential as weak charge transfer thermally activated delayed fluorescence (TADF) emitters, providing narrow photoluminescence. In this work, we present a... Read More about Acridone-amine D-A-D thermally activated delayed fluorescence emitters with narrow resolved electroluminescence and their electrochromic properties.

Exceptionally Fast Radiative Decay of a Dinuclear Platinum Complex Through Thermally Activated Delayed Fluorescence (2021)
Journal Article
Pander, P. H., Daniels, R., Zaytsev, A., Horn, A., Sil, A., Penfold, T., …Dias, F. B. (2021). Exceptionally Fast Radiative Decay of a Dinuclear Platinum Complex Through Thermally Activated Delayed Fluorescence. Chemical Science, 6172-6180. https://doi.org/10.1039/d1sc00160d

A novel dinuclear platinum(II) complex featuring a ditopic, bis-tetradentate ligand has been prepared. The ligand offers each metal ion a planar O^N^C^N coordination environment, with the two metal ions bound to the nitrogen atoms of a bridging pyrim... Read More about Exceptionally Fast Radiative Decay of a Dinuclear Platinum Complex Through Thermally Activated Delayed Fluorescence.

Enhancement of thermally activated delayed fluorescence properties by substitution of ancillary halogen in a multiple resonance-like diplatinum(ii) complex (2021)
Journal Article
Pander, P., Zaytsev, A. V., Sil, A., Williams, J. G., Kozhevnikov, V. N., & Dias, F. B. (2022). Enhancement of thermally activated delayed fluorescence properties by substitution of ancillary halogen in a multiple resonance-like diplatinum(ii) complex. Journal of Materials Chemistry C Materials for optical and electronic devices, 10(12), 4851-4860. https://doi.org/10.1039/d1tc05026e

We present an in-depth investigation of the influence of chloro-to-iodo exchange on the thermally activated delayed fluorescence (TADF) of a dinuclear platinum(II) complex featuring monodentate halide ancillary ligands. The complexes are constructed... Read More about Enhancement of thermally activated delayed fluorescence properties by substitution of ancillary halogen in a multiple resonance-like diplatinum(ii) complex.

Extended ligand conjugation and dinuclearity as a route to efficient platinum-based near-infrared (NIR) triplet emitters and solution-processed NIR-OLEDs (2020)
Journal Article
Shafikov, M. Z., Pander, P., Zaytsev, A. V., Daniels, R., Martinscroft, R., Dias, F. B., …Kozhevnikov, V. N. (2021). Extended ligand conjugation and dinuclearity as a route to efficient platinum-based near-infrared (NIR) triplet emitters and solution-processed NIR-OLEDs. Journal of Materials Chemistry C Materials for optical and electronic devices, 9(1), 127-135. https://doi.org/10.1039/d0tc04881j

Near infrared (NIR) emission from molecular materials is typically targeted by using more extended conjugated systems compared to visible-emitting materials. But efficiencies usually fall off due to the combined effects of increasing non-radiative an... Read More about Extended ligand conjugation and dinuclearity as a route to efficient platinum-based near-infrared (NIR) triplet emitters and solution-processed NIR-OLEDs.

Benzannulation via the use of 1,2,4-triazines extends aromatic system of cyclometallated Pt(II) complexes to achieve candle light electroluminescence (2020)
Journal Article
Pander, P., Turnbull, G., Zaytsev, A. V., Dias, F. B., & Kozhevnikov, V. N. (2021). Benzannulation via the use of 1,2,4-triazines extends aromatic system of cyclometallated Pt(II) complexes to achieve candle light electroluminescence. Dyes and Pigments, 184, Article 108857. https://doi.org/10.1016/j.dyepig.2020.108857

This work describes an application of 1,2,4-triazine methodology for the synthesis of novel cyclometallated Pt (II) complexes of C^N type. It is shown that addition of a cyclopenteno unit into the complex structure not only facilitates the fabricatio... Read More about Benzannulation via the use of 1,2,4-triazines extends aromatic system of cyclometallated Pt(II) complexes to achieve candle light electroluminescence.

Luminescent halogen-substituted 2-(N-arylimino)pyrrolyl boron complexes: the internal heavy-atom effect (2020)
Journal Article
Rodrigues, A. I., Krishnamoorthy, P., Gomes, C. S., Carmona, N., Di Paolo, R. E., Pander, P., …Gomes, P. T. (2020). Luminescent halogen-substituted 2-(N-arylimino)pyrrolyl boron complexes: the internal heavy-atom effect. Dalton Transactions, 49(29), 10185-10202. https://doi.org/10.1039/d0dt01845g

A group of new boron complexes [BPh2{2N,N’-NC4H3-2-C(H)=N-C6H4X}] (X= 4-Cl 4c, 4-Br 4d, 4-I 4e, 3-Br 4f, 2-Br 4g, 2-I 4h) containing different halogens as substituents in the N-aryl ring have been synthesized and characterized in terms of their mole... Read More about Luminescent halogen-substituted 2-(N-arylimino)pyrrolyl boron complexes: the internal heavy-atom effect.

Toward Efficient Toxic-Gas Detectors: Exploring Molecular Interactions of Sarin and Dimethyl Methylphosphonate with Metal-Centered Phthalocyanine Structures (2020)
Journal Article
Aldahhak, H., Powroźnik, P., Pander, P., Jakubik, W., Dias, F. B., Schmidt, W. G., …Krzywiecki, M. (2020). Toward Efficient Toxic-Gas Detectors: Exploring Molecular Interactions of Sarin and Dimethyl Methylphosphonate with Metal-Centered Phthalocyanine Structures. Journal of Physical Chemistry C, 124(11), 6090-6102. https://doi.org/10.1021/acs.jpcc.9b11116

The rapid and reliable detection of lethal agents such as sarin is of increasing importance. Here, density-functional theory (DFT) is used to compare the interaction of sarin with single-metal-centered phthalocyanine (MPc) and MPc layer structures to... Read More about Toward Efficient Toxic-Gas Detectors: Exploring Molecular Interactions of Sarin and Dimethyl Methylphosphonate with Metal-Centered Phthalocyanine Structures.

Donor-acceptor 1,2,4,5-Tetrazines Prepared by Buchwald-Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-on Property by Inverse Electron Demand Diels-Alder Reaction (2020)
Journal Article
Qu, Y., Pander, P. H., Vybornyi, O., Vasylieva, M., Guillot, R., Miomandre, F., …Audebert, P. (2020). Donor-acceptor 1,2,4,5-Tetrazines Prepared by Buchwald-Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-on Property by Inverse Electron Demand Diels-Alder Reaction. Journal of Organic Chemistry, 85(5), 3407-3416. https://doi.org/10.1021/acs.joc.9b02817

A facile efficient synthetic tool, Buchwald-Hartwig cross-coupling reaction, for the functionalization of 1,2,4,5-tetrazines is presented. Important factors affecting the Buchwald-Hartwig cross-coupling reaction have been optimized. Seven new donor-a... Read More about Donor-acceptor 1,2,4,5-Tetrazines Prepared by Buchwald-Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-on Property by Inverse Electron Demand Diels-Alder Reaction.

Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence (2018)
Journal Article
Chen, C., Huang, R., Batsanov, A., Pander, P., Hsu, Y., Chi, Z., …Bryce, M. R. (2018). Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Angewandte Chemie, 130(50), 16645-16649. https://doi.org/10.1002/ange.201809945

Chemical modification of phenothiazine–benzophenone derivatives is shown to tune the emission behavior from triplet states by selecting the molecular geometry of the intramolecular charge transfer (ICT) state. A fundamental principle of planar ICT (P... Read More about Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence.

Interfacial TADF Exciplex as a Tool to Localise Excitons, Improve Efficiency and Increase OLED Lifetime (2018)
Journal Article
Colella, M., Pander, P. H., Pereira, D. D. S., & Monkman, A. P. (2018). Interfacial TADF Exciplex as a Tool to Localise Excitons, Improve Efficiency and Increase OLED Lifetime. ACS Applied Materials and Interfaces, 10(46), 40001-40007. https://doi.org/10.1021/acsami.8b15942

In this work, we employ a TADF exciplex formed between the emissive layer (EML) host, 26DCzPPy, and the electron transport layer (ETL), PO-T2T at the interface between the EML and the ETL to improve the stability and efficiency of a phosphorescence O... Read More about Interfacial TADF Exciplex as a Tool to Localise Excitons, Improve Efficiency and Increase OLED Lifetime.

Thermally Activated Delayed Fluorescence Mediated through the Upper Triplet State Manifold in Non-Charge-Transfer Star-Shaped Triphenylamine–Carbazole Molecules (2018)
Journal Article
Pander, P., Motyka, R., Zassowski, P., Etherington, M. K., Varsano, D., da Silva, T. J., …Monkman, A. P. (2018). Thermally Activated Delayed Fluorescence Mediated through the Upper Triplet State Manifold in Non-Charge-Transfer Star-Shaped Triphenylamine–Carbazole Molecules. Journal of Physical Chemistry C, 122(42), 23934-23942. https://doi.org/10.1021/acs.jpcc.8b07610

Thermally activated delayed fluorescence has been found in a group of tricarbazolylamines that are purely electron-donating, non-charge-transfer (CT) molecules. We show that the reverse intersystem crossing step in these materials is mediated through... Read More about Thermally Activated Delayed Fluorescence Mediated through the Upper Triplet State Manifold in Non-Charge-Transfer Star-Shaped Triphenylamine–Carbazole Molecules.

Thermally-Activated Delayed Fluorescence in Polymer-Small Molecule Exciplex Blends for Solution-Processed Organic Light-Emitting Diodes (2018)
Journal Article
Pander, P. H., Gogoc, S., Colella, M., Data, P., & Dias, F. B. (2018). Thermally-Activated Delayed Fluorescence in Polymer-Small Molecule Exciplex Blends for Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials and Interfaces, 10(34), 28796-28802. https://doi.org/10.1021/acsami.8b07554

The photophysics of an exciplex state, formed between a small molecule and a polymer, is investigated in this work. The results obtained with this blend show the strong potential of polymer-small molecule blends for triplet harvesting in organic ligh... Read More about Thermally-Activated Delayed Fluorescence in Polymer-Small Molecule Exciplex Blends for Solution-Processed Organic Light-Emitting Diodes.

Thermally Activated Delayed Fluorescence with Narrow Emission Spectrum and Organic Room Temperature Phosphorescence by Controlling Spin-Orbit Coupling and Phosphorescence Lifetime of Metal-Free Organic Molecules (2018)
Journal Article
Pander, P. H., Swist, A., Soloducho, J., Dias, F., & Data, P. (2018). Thermally Activated Delayed Fluorescence with Narrow Emission Spectrum and Organic Room Temperature Phosphorescence by Controlling Spin-Orbit Coupling and Phosphorescence Lifetime of Metal-Free Organic Molecules. Journal of Materials Chemistry C Materials for optical and electronic devices, 6(20), 5434--5443. https://doi.org/10.1039/c8tc00175h

This work shows a study of two organic molecules with very similar, large singlet-triplet gap of which one is a TADF emitter and the other an RTP emitter. By investigation of photophysical properties of these compounds, it is possible to explain thei... Read More about Thermally Activated Delayed Fluorescence with Narrow Emission Spectrum and Organic Room Temperature Phosphorescence by Controlling Spin-Orbit Coupling and Phosphorescence Lifetime of Metal-Free Organic Molecules.

1,2,4-Triazines in the Synthesis of Bipyridine Bisphenolate O^N^N^O Ligands and Their Highly Luminescent Tetradentate Pt(II) Complexes for Solution-Processable OLEDs (2018)
Journal Article
Pander, P., Bulmer, R., Martinscroft, R., Thompson, S., Lewis, F., Penfold, T., …Kozhevnikov, V. (2018). 1,2,4-Triazines in the Synthesis of Bipyridine Bisphenolate O^N^N^O Ligands and Their Highly Luminescent Tetradentate Pt(II) Complexes for Solution-Processable OLEDs. Inorganic Chemistry, 57(7), 3825-3832. https://doi.org/10.1021/acs.inorgchem.7b03175

Easily accessible bis-1,2,4-triazines can be converted to corresponding pyridines by the Boger reaction, opening up convenient synthesis pathways to salen-type tetradentate dianionic ligands. The new ligands were used to prepare highly luminescent ON... Read More about 1,2,4-Triazines in the Synthesis of Bipyridine Bisphenolate O^N^N^O Ligands and Their Highly Luminescent Tetradentate Pt(II) Complexes for Solution-Processable OLEDs.