Skip to main content

Research Repository

Advanced Search

Outputs (10)

Seeing Through the Data: A Statistical Evaluation of Prohibited Item Detection Benchmark Datasets for X-ray Security Screening
Presentation / Conference Contribution
Issac-Medina, B., Yucer, S., Bhowmik, N., & Breckon, T. (2023, June). Seeing Through the Data: A Statistical Evaluation of Prohibited Item Detection Benchmark Datasets for X-ray Security Screening. Presented at IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023, Vancouver, BC

The rapid progress in automatic prohibited object detection within the context of X-ray security screening, driven forward by advances in deep learning, has resulted in the first internationally-recognized, application-focused object detection perfor... Read More about Seeing Through the Data: A Statistical Evaluation of Prohibited Item Detection Benchmark Datasets for X-ray Security Screening.

Region-based Appearance and Flow Characteristics for Anomaly Detection in Infrared Surveillance Imagery
Presentation / Conference Contribution
Gaus, Y., Bhowmik, N., Issac-Medina, B., Atapour-Abarghouei, A., Shum, H., & Breckon, T. (2023, June). Region-based Appearance and Flow Characteristics for Anomaly Detection in Infrared Surveillance Imagery. Presented at IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023, Vancouver, BC

Anomaly detection is a classical problem within automated visual surveillance, namely the determination of the normal from the abnormal when operational data availability is highly biased towards one class (normal) due to both insufficient sample siz... Read More about Region-based Appearance and Flow Characteristics for Anomaly Detection in Infrared Surveillance Imagery.

Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption
Presentation / Conference Contribution
Barker, J., Bhowmik, N., Gaus, Y., & Breckon, T. (2023, February). Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption. Presented at VISAPP 2023: 18th International Conference on Computer Vision Theory and Applications, Lisbon, Portugal

Anomaly detection is the task of recognising novel samples which deviate significantly from pre-established normality. Abnormal classes are not present during training meaning that models must learn effective representations solely across normal clas... Read More about Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption.

Joint Sub-component Level Segmentation and Classification for Anomaly Detection within Dual-Energy X-Ray Security Imagery
Presentation / Conference Contribution
Bhowmik, N., & Breckon, T. (2022, December). Joint Sub-component Level Segmentation and Classification for Anomaly Detection within Dual-Energy X-Ray Security Imagery. Presented at International Conference on Machine Learning Applications, Bahamas

X-ray baggage security screening is in widespread use and crucial to maintaining transport security for threat/anomaly detection tasks. The automatic detection of anomaly, which is concealed within cluttered and complex electronics/electrical items,... Read More about Joint Sub-component Level Segmentation and Classification for Anomaly Detection within Dual-Energy X-Ray Security Imagery.

Cross-modal Image Synthesis in Dual-Energy X-Ray Security Imagery
Presentation / Conference Contribution
Isaac-Medina, B., Bhowmik, N., Willcocks, C., & Breckon, T. (2022, June). Cross-modal Image Synthesis in Dual-Energy X-Ray Security Imagery. Presented at 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, Louisiana

Dual-energy X-ray scanners are used for aviation security screening given their capability to discriminate materials inside passenger baggage. To facilitate manual operator inspection, a pseudo-colouring is assigned to the effective composition of th... Read More about Cross-modal Image Synthesis in Dual-Energy X-Ray Security Imagery.

Lost in Compression: the Impact of Lossy Image Compression on Variable Size Object Detection within Infrared Imagery
Presentation / Conference Contribution
Bhowmik, N., Barker, J., Gaus, Y., & Breckon, T. (2022, June). Lost in Compression: the Impact of Lossy Image Compression on Variable Size Object Detection within Infrared Imagery. Presented at 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, Louisiana

Lossy image compression strategies allow for more efficient storage and transmission of data by encoding data to a reduced form. This is essential enable training with larger datasets on less storage-equipped environments. However, such compression c... Read More about Lost in Compression: the Impact of Lossy Image Compression on Variable Size Object Detection within Infrared Imagery.

On the Impact of Using X-Ray Energy Response Imagery for Object Detection via Convolutional Neural Networks
Presentation / Conference Contribution
Bhowmik, N., Gaus, Y., & Breckon, T. (2021, September). On the Impact of Using X-Ray Energy Response Imagery for Object Detection via Convolutional Neural Networks. Presented at International Conference on Image Processing, Anchorage, AK

Automatic detection of prohibited items within complex and cluttered X-ray security imagery is essential to maintaining transport security, where prior work on automatic prohibited item detection focus primarily on pseudo-colour (rgb) X-ray imagery.... Read More about On the Impact of Using X-Ray Energy Response Imagery for Object Detection via Convolutional Neural Networks.

Multi-Class 3D Object Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery
Presentation / Conference Contribution
Wang, Q., Bhowmik, N., & Breckon, T. (2020, December). Multi-Class 3D Object Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery. Presented at 19th IEEE International Conference on Machine Learning and Applications (ICMLA 2020), Miami, Florida

Automatic detection of prohibited objects within passenger baggage is important for aviation security. X-ray Computed Tomography (CT) based 3D imaging is widely used in airports for aviation security screening whilst prior work on automatic prohibite... Read More about Multi-Class 3D Object Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery.

Efficient and Compact Convolutional Neural Network Architectures for Non-temporal Real-time Fire Detection
Presentation / Conference Contribution
Thomson, W., Bhowmik, N., & Breckon, T. (2020, December). Efficient and Compact Convolutional Neural Network Architectures for Non-temporal Real-time Fire Detection. Presented at 19th IEEE International Conference on Machine Learning and Applications (ICMLA 2020), Miami, FL

Automatic visual fire detection is used to complement traditional fire detection sensor systems (smoke/heat). In this work, we investigate different Convolutional Neural Network (CNN) architectures and their variants for the non-temporal real-time bo... Read More about Efficient and Compact Convolutional Neural Network Architectures for Non-temporal Real-time Fire Detection.

Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery
Presentation / Conference Contribution
Gaus, Y., Bhowmik, N., Isaac-Medina, B., & Breckon, T. (2020, September). Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery. Presented at Spie Security + Defence

Object detection from infrared-band (thermal) imagery has been a challenging problem for many years. With the advent of deep Convolutional Neural Networks (CNN), the automated detection and classification of objects of interest within the scene has b... Read More about Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery.