Upper bounds for Steklov eigenvalues of submanifolds in Euclidean space via the intersection index
(2021)
Journal Article
Colbois, B., & Gittins, K. (2021). Upper bounds for Steklov eigenvalues of submanifolds in Euclidean space via the intersection index. Differential Geometry and its Applications, 78, Article 101777. https://doi.org/10.1016/j.difgeo.2021.101777
We obtain upper bounds for the Steklov eigenvalues σk(M)of a smooth, compact, n-dimensional submanifold M of Euclidean space with boundary Σ that involve the intersection indices of M and of Σ. One of our main results is an explicit upper bound in te... Read More about Upper bounds for Steklov eigenvalues of submanifolds in Euclidean space via the intersection index.