Skip to main content

Research Repository

Advanced Search

Dr Matthew Watson's Outputs (8)

The variable relationship between the National Early Warning Score on admission to hospital, the primary discharge diagnosis and in-hospital mortality Authors information (2025)
Journal Article
Holland, M., Kellett, J., Boulitsakis-Logothetis, S., Watson, M., Al Moubayed, N., & Green, D. (online). The variable relationship between the National Early Warning Score on admission to hospital, the primary discharge diagnosis and in-hospital mortality Authors information. Internal and Emergency Medicine, https://doi.org/10.1007/s11739-024-03828-9

Background: Patients with an elevated admission National Early Warning Score (NEWS) are more likely to die while in hospital. However, it is not known if this increased mortality risk is the same for all diagnoses. The aim of this study was to determ... Read More about The variable relationship between the National Early Warning Score on admission to hospital, the primary discharge diagnosis and in-hospital mortality Authors information.

Performance of machine learning versus the national early warning score for predicting patient deterioration risk: a single-site study of emergency admissions (2024)
Journal Article
Watson, M., Boulitsakis Logothetis, S., Green, D., Holland, M., Chambers, P., & Al Moubayed, N. (2024). Performance of machine learning versus the national early warning score for predicting patient deterioration risk: a single-site study of emergency admissions. BMJ Health & Care Informatics, 31(1), Article e101088. https://doi.org/10.1136/bmjhci-2024-101088

Objectives: Increasing operational pressures on emergency departments (ED) make it imperative to quickly and accurately identify patients requiring urgent clinical intervention. The widespread adoption of electronic health records (EHR) makes rich fe... Read More about Performance of machine learning versus the national early warning score for predicting patient deterioration risk: a single-site study of emergency admissions.

From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers (2024)
Journal Article
Watson, M., Chambers, P., Steventon, L., Harmsworth King, J., Ercia, A., Shaw, H., & Al Moubayed, N. (2024). From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers. BMJ Oncology, 3(1), Article e000430. https://doi.org/10.1136/bmjonc-2024-000430

Objectives: Routine monitoring of renal and hepatic function during chemotherapy ensures that treatment-related organ damage has not occurred and clearance of subsequent treatment is not hindered; however, frequency and timing are not optimal. Model... Read More about From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers.

Personalising monitoring for chemotherapy patients through predicting deterioration in renal and hepatic function (2023)
Journal Article
Chambers, P., Watson, M., Bridgewater, J., Forster, M. D., Roylance, R., Burgoyne, R., Masento, S., Steventon, L., Harmsworth King, J., Duncan, N., & al Moubayed, N. (2023). Personalising monitoring for chemotherapy patients through predicting deterioration in renal and hepatic function. Cancer Medicine, 12(17), 17856-17865. https://doi.org/10.1002/cam4.6418

Background
In those receiving chemotherapy, renal and hepatic dysfunction can increase the risk of toxicity and should therefore be monitored. We aimed to develop a machine learning model to identify those patients that need closer monitoring, enabl... Read More about Personalising monitoring for chemotherapy patients through predicting deterioration in renal and hepatic function.

Using Model Explanations to Guide Deep Learning Models Towards Consistent Explanations for EHR Data (2022)
Journal Article
Watson, M., Awwad Shekh Hasan, B., & Al Moubayed, N. (2022). Using Model Explanations to Guide Deep Learning Models Towards Consistent Explanations for EHR Data. Scientific Reports, 12(19899), Article 19899. https://doi.org/10.1038/s41598-022-24356-6

It has been shown that identical Deep Learning (DL) architectures will produce distinct explanations when trained with different hyperparameters that are orthogonal to the task (e.g. random seed, training set order). In domains such as healthcare and... Read More about Using Model Explanations to Guide Deep Learning Models Towards Consistent Explanations for EHR Data.

Agree to Disagree: When Deep Learning Models With Identical Architectures Produce Distinct Explanations (2022)
Presentation / Conference Contribution
Watson, M., Awwad Shiekh Hasan, B., & Al Moubayed, N. (2022, January). Agree to Disagree: When Deep Learning Models With Identical Architectures Produce Distinct Explanations. Presented at Proc. Winter Conference on Applications of Computer Vision, Waikoloa, HI

Deep Learning of neural networks has progressively become more prominent in healthcare with models reaching, or even surpassing, expert accuracy levels. However, these success stories are tainted by concerning reports on the lack of model transparenc... Read More about Agree to Disagree: When Deep Learning Models With Identical Architectures Produce Distinct Explanations.

Attack-agnostic Adversarial Detection on Medical Data Using Explainable Machine Learning (2021)
Presentation / Conference Contribution
Watson, M., & Al Moubayed, N. (2021, January). Attack-agnostic Adversarial Detection on Medical Data Using Explainable Machine Learning. Presented at The 25th International Conference on Pattern Recognition (ICPR2020), Milan, Italy

Explainable machine learning has become increasingly prevalent, especially in healthcare where explainable models are vital for ethical and trusted automated decision making. Work on the susceptibility of deep learning models to adversarial attacks h... Read More about Attack-agnostic Adversarial Detection on Medical Data Using Explainable Machine Learning.

Improving Current Glycated Hemoglobin Prediction in Adults: Use of Machine Learning Algorithms with Electronic Health Records (2021)
Journal Article
Alhassan, Z., Watson, M., Budgen, D., Alshammari, R., Alessa, A., & Al Moubayed, N. (2021). Improving Current Glycated Hemoglobin Prediction in Adults: Use of Machine Learning Algorithms with Electronic Health Records. JMIR Medical Informatics, 9(5), Article e25237. https://doi.org/10.2196/25237

Background: Predicting the risk of glycated hemoglobin (HbA1c) elevation can help identify patients with the potential for developing serious chronic health problems such as diabetes. Early preventive interventions based upon advanced predictive mode... Read More about Improving Current Glycated Hemoglobin Prediction in Adults: Use of Machine Learning Algorithms with Electronic Health Records.